autoanchor.py 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161
  1. # Auto-anchor utils
  2. import numpy as np
  3. import torch
  4. import yaml
  5. from tqdm import tqdm
  6. from utils.general import colorstr
  7. def check_anchor_order(m):
  8. # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
  9. a = m.anchor_grid.prod(-1).view(-1) # anchor area
  10. da = a[-1] - a[0] # delta a
  11. ds = m.stride[-1] - m.stride[0] # delta s
  12. if da.sign() != ds.sign(): # same order
  13. print('Reversing anchor order')
  14. m.anchors[:] = m.anchors.flip(0)
  15. m.anchor_grid[:] = m.anchor_grid.flip(0)
  16. def check_anchors(dataset, model, thr=4.0, imgsz=640):
  17. # Check anchor fit to data, recompute if necessary
  18. prefix = colorstr('autoanchor: ')
  19. print(f'\n{prefix}Analyzing anchors... ', end='')
  20. m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
  21. shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
  22. scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
  23. wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
  24. def metric(k): # compute metric
  25. r = wh[:, None] / k[None]
  26. x = torch.min(r, 1. / r).min(2)[0] # ratio metric
  27. best = x.max(1)[0] # best_x
  28. aat = (x > 1. / thr).float().sum(1).mean() # anchors above threshold
  29. bpr = (best > 1. / thr).float().mean() # best possible recall
  30. return bpr, aat
  31. anchors = m.anchor_grid.clone().cpu().view(-1, 2) # current anchors
  32. bpr, aat = metric(anchors)
  33. print(f'anchors/target = {aat:.2f}, Best Possible Recall (BPR) = {bpr:.4f}', end='')
  34. if bpr < 0.98: # threshold to recompute
  35. print('. Attempting to improve anchors, please wait...')
  36. na = m.anchor_grid.numel() // 2 # number of anchors
  37. try:
  38. anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
  39. except Exception as e:
  40. print(f'{prefix}ERROR: {e}')
  41. new_bpr = metric(anchors)[0]
  42. if new_bpr > bpr: # replace anchors
  43. anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
  44. m.anchor_grid[:] = anchors.clone().view_as(m.anchor_grid) # for inference
  45. m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss
  46. check_anchor_order(m)
  47. print(f'{prefix}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
  48. else:
  49. print(f'{prefix}Original anchors better than new anchors. Proceeding with original anchors.')
  50. print('') # newline
  51. def kmean_anchors(path='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
  52. """ Creates kmeans-evolved anchors from training dataset
  53. Arguments:
  54. path: path to dataset *.yaml, or a loaded dataset
  55. n: number of anchors
  56. img_size: image size used for training
  57. thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
  58. gen: generations to evolve anchors using genetic algorithm
  59. verbose: print all results
  60. Return:
  61. k: kmeans evolved anchors
  62. Usage:
  63. from utils.autoanchor import *; _ = kmean_anchors()
  64. """
  65. from scipy.cluster.vq import kmeans
  66. thr = 1. / thr
  67. prefix = colorstr('autoanchor: ')
  68. def metric(k, wh): # compute metrics
  69. r = wh[:, None] / k[None]
  70. x = torch.min(r, 1. / r).min(2)[0] # ratio metric
  71. # x = wh_iou(wh, torch.tensor(k)) # iou metric
  72. return x, x.max(1)[0] # x, best_x
  73. def anchor_fitness(k): # mutation fitness
  74. _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
  75. return (best * (best > thr).float()).mean() # fitness
  76. def print_results(k):
  77. k = k[np.argsort(k.prod(1))] # sort small to large
  78. x, best = metric(k, wh0)
  79. bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
  80. print(f'{prefix}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr')
  81. print(f'{prefix}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, '
  82. f'past_thr={x[x > thr].mean():.3f}-mean: ', end='')
  83. for i, x in enumerate(k):
  84. print('%i,%i' % (round(x[0]), round(x[1])), end=', ' if i < len(k) - 1 else '\n') # use in *.cfg
  85. return k
  86. if isinstance(path, str): # *.yaml file
  87. with open(path) as f:
  88. data_dict = yaml.safe_load(f) # model dict
  89. from utils.datasets import LoadImagesAndLabels
  90. dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
  91. else:
  92. dataset = path # dataset
  93. # Get label wh
  94. shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
  95. wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
  96. # Filter
  97. i = (wh0 < 3.0).any(1).sum()
  98. if i:
  99. print(f'{prefix}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
  100. wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels
  101. # wh = wh * (np.random.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
  102. # Kmeans calculation
  103. print(f'{prefix}Running kmeans for {n} anchors on {len(wh)} points...')
  104. s = wh.std(0) # sigmas for whitening
  105. k, dist = kmeans(wh / s, n, iter=30) # points, mean distance
  106. assert len(k) == n, print(f'{prefix}ERROR: scipy.cluster.vq.kmeans requested {n} points but returned only {len(k)}')
  107. k *= s
  108. wh = torch.tensor(wh, dtype=torch.float32) # filtered
  109. wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered
  110. k = print_results(k)
  111. # Plot
  112. # k, d = [None] * 20, [None] * 20
  113. # for i in tqdm(range(1, 21)):
  114. # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
  115. # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
  116. # ax = ax.ravel()
  117. # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
  118. # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
  119. # ax[0].hist(wh[wh[:, 0]<100, 0],400)
  120. # ax[1].hist(wh[wh[:, 1]<100, 1],400)
  121. # fig.savefig('wh.png', dpi=200)
  122. # Evolve
  123. npr = np.random
  124. f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
  125. pbar = tqdm(range(gen), desc=f'{prefix}Evolving anchors with Genetic Algorithm:') # progress bar
  126. for _ in pbar:
  127. v = np.ones(sh)
  128. while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
  129. v = ((npr.random(sh) < mp) * npr.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
  130. kg = (k.copy() * v).clip(min=2.0)
  131. fg = anchor_fitness(kg)
  132. if fg > f:
  133. f, k = fg, kg.copy()
  134. pbar.desc = f'{prefix}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
  135. if verbose:
  136. print_results(k)
  137. return print_results(k)