123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692 |
- import glob
- import logging
- import math
- import os
- import platform
- import random
- import re
- import subprocess
- import time
- from itertools import repeat
- from multiprocessing.pool import ThreadPool
- from pathlib import Path
- import cv2
- import numpy as np
- import pandas as pd
- import pkg_resources as pkg
- import torch
- import torchvision
- import yaml
- from utils.google_utils import gsutil_getsize
- from utils.metrics import fitness
- from utils.torch_utils import init_torch_seeds
- torch.set_printoptions(linewidth=320, precision=5, profile='long')
- np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format})
- pd.options.display.max_columns = 10
- cv2.setNumThreads(0)
- os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8))
- def set_logging(rank=-1, verbose=True):
- logging.basicConfig(
- format="%(message)s",
- level=logging.INFO if (verbose and rank in [-1, 0]) else logging.WARN)
- def init_seeds(seed=0):
-
- random.seed(seed)
- np.random.seed(seed)
- init_torch_seeds(seed)
- def get_latest_run(search_dir='.'):
-
- last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
- return max(last_list, key=os.path.getctime) if last_list else ''
- def is_docker():
-
- return Path('/workspace').exists()
- def is_colab():
-
- try:
- import google.colab
- return True
- except Exception as e:
- return False
- def emojis(str=''):
-
- return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
- def file_size(file):
-
- return Path(file).stat().st_size / 1e6
- def check_online():
-
- import socket
- try:
- socket.create_connection(("1.1.1.1", 443), 5)
- return True
- except OSError:
- return False
- def check_git_status():
-
- print(colorstr('github: '), end='')
- try:
- assert Path('.git').exists(), 'skipping check (not a git repository)'
- assert not is_docker(), 'skipping check (Docker image)'
- assert check_online(), 'skipping check (offline)'
- cmd = 'git fetch && git config --get remote.origin.url'
- url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git')
- branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip()
- n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True))
- if n > 0:
- s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
- f"Use 'git pull' to update or 'git clone {url}' to download latest."
- else:
- s = f'up to date with {url} ✅'
- print(emojis(s))
- except Exception as e:
- print(e)
- def check_python(minimum='3.7.0', required=True):
-
- current = platform.python_version()
- result = pkg.parse_version(current) >= pkg.parse_version(minimum)
- if required:
- assert result, f'Python {minimum} required by YOLOv5, but Python {current} is currently installed'
- return result
- def check_requirements(requirements='requirements.txt', exclude=()):
-
- prefix = colorstr('red', 'bold', 'requirements:')
- check_python()
- if isinstance(requirements, (str, Path)):
- file = Path(requirements)
- if not file.exists():
- print(f"{prefix} {file.resolve()} not found, check failed.")
- return
- requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
- else:
- requirements = [x for x in requirements if x not in exclude]
- n = 0
- for r in requirements:
- try:
- pkg.require(r)
- except Exception as e:
- n += 1
- print(f"{prefix} {r} not found and is required by YOLOv5, attempting auto-update...")
- try:
- print(subprocess.check_output(f"pip install '{r}'", shell=True).decode())
- except Exception as e:
- print(f'{prefix} {e}')
- if n:
- source = file.resolve() if 'file' in locals() else requirements
- s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
- f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
- print(emojis(s))
- def check_img_size(img_size, s=32):
-
- new_size = make_divisible(img_size, int(s))
- if new_size != img_size:
- print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
- return new_size
- def check_imshow():
-
- try:
- assert not is_docker(), 'cv2.imshow() is disabled in Docker environments'
- assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments'
- cv2.imshow('test', np.zeros((1, 1, 3)))
- cv2.waitKey(1)
- cv2.destroyAllWindows()
- cv2.waitKey(1)
- return True
- except Exception as e:
- print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
- return False
- def check_file(file):
-
- if Path(file).is_file() or file == '':
- return file
- else:
- files = glob.glob('./**/' + file, recursive=True)
- assert len(files), f'File Not Found: {file}'
- assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}"
- return files[0]
- def check_dataset(dict):
-
- val, s = dict.get('val'), dict.get('download')
- if val and len(val):
- val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])]
- if not all(x.exists() for x in val):
- print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
- if s and len(s):
- if s.startswith('http') and s.endswith('.zip'):
- f = Path(s).name
- print(f'Downloading {s} ...')
- torch.hub.download_url_to_file(s, f)
- r = os.system(f'unzip -q {f} -d ../ && rm {f}')
- elif s.startswith('bash '):
- print(f'Running {s} ...')
- r = os.system(s)
- else:
- r = exec(s)
- print('Dataset autodownload %s\n' % ('success' if r in (0, None) else 'failure'))
- else:
- raise Exception('Dataset not found.')
- def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
-
- def download_one(url, dir):
-
- f = dir / Path(url).name
- if not f.exists():
- print(f'Downloading {url} to {f}...')
- if curl:
- os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -")
- else:
- torch.hub.download_url_to_file(url, f, progress=True)
- if unzip and f.suffix in ('.zip', '.gz'):
- print(f'Unzipping {f}...')
- if f.suffix == '.zip':
- s = f'unzip -qo {f} -d {dir} && rm {f}'
- elif f.suffix == '.gz':
- s = f'tar xfz {f} --directory {f.parent}'
- if delete:
- s += f' && rm {f}'
- os.system(s)
- dir = Path(dir)
- dir.mkdir(parents=True, exist_ok=True)
- if threads > 1:
- pool = ThreadPool(threads)
- pool.imap(lambda x: download_one(*x), zip(url, repeat(dir)))
- pool.close()
- pool.join()
- else:
- for u in tuple(url) if isinstance(url, str) else url:
- download_one(u, dir)
- def make_divisible(x, divisor):
-
- return math.ceil(x / divisor) * divisor
- def clean_str(s):
-
- return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
- def one_cycle(y1=0.0, y2=1.0, steps=100):
-
- return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
- def colorstr(*input):
-
- *args, string = input if len(input) > 1 else ('blue', 'bold', input[0])
- colors = {'black': '\033[30m',
- 'red': '\033[31m',
- 'green': '\033[32m',
- 'yellow': '\033[33m',
- 'blue': '\033[34m',
- 'magenta': '\033[35m',
- 'cyan': '\033[36m',
- 'white': '\033[37m',
- 'bright_black': '\033[90m',
- 'bright_red': '\033[91m',
- 'bright_green': '\033[92m',
- 'bright_yellow': '\033[93m',
- 'bright_blue': '\033[94m',
- 'bright_magenta': '\033[95m',
- 'bright_cyan': '\033[96m',
- 'bright_white': '\033[97m',
- 'end': '\033[0m',
- 'bold': '\033[1m',
- 'underline': '\033[4m'}
- return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
- def labels_to_class_weights(labels, nc=80):
-
- if labels[0] is None:
- return torch.Tensor()
- labels = np.concatenate(labels, 0)
- classes = labels[:, 0].astype(np.int)
- weights = np.bincount(classes, minlength=nc)
-
-
-
- weights[weights == 0] = 1
- weights = 1 / weights
- weights /= weights.sum()
- return torch.from_numpy(weights)
- def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
-
- class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
- image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
-
- return image_weights
- def coco80_to_coco91_class():
-
-
-
-
-
- x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
- 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
- 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
- return x
- def xyxy2xywh(x):
-
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
- y[:, 0] = (x[:, 0] + x[:, 2]) / 2
- y[:, 1] = (x[:, 1] + x[:, 3]) / 2
- y[:, 2] = x[:, 2] - x[:, 0]
- y[:, 3] = x[:, 3] - x[:, 1]
- return y
- def xywh2xyxy(x):
-
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
- y[:, 0] = x[:, 0] - x[:, 2] / 2
- y[:, 1] = x[:, 1] - x[:, 3] / 2
- y[:, 2] = x[:, 0] + x[:, 2] / 2
- y[:, 3] = x[:, 1] + x[:, 3] / 2
- return y
- def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
-
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
- y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw
- y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh
- y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw
- y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh
- return y
- def xyn2xy(x, w=640, h=640, padw=0, padh=0):
-
- y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
- y[:, 0] = w * x[:, 0] + padw
- y[:, 1] = h * x[:, 1] + padh
- return y
- def segment2box(segment, width=640, height=640):
-
- x, y = segment.T
- inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
- x, y, = x[inside], y[inside]
- return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4))
- def segments2boxes(segments):
-
- boxes = []
- for s in segments:
- x, y = s.T
- boxes.append([x.min(), y.min(), x.max(), y.max()])
- return xyxy2xywh(np.array(boxes))
- def resample_segments(segments, n=1000):
-
- for i, s in enumerate(segments):
- x = np.linspace(0, len(s) - 1, n)
- xp = np.arange(len(s))
- segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T
- return segments
- def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
-
- if ratio_pad is None:
- gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])
- pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2
- else:
- gain = ratio_pad[0][0]
- pad = ratio_pad[1]
- coords[:, [0, 2]] -= pad[0]
- coords[:, [1, 3]] -= pad[1]
- coords[:, :4] /= gain
- clip_coords(coords, img0_shape)
- return coords
- def clip_coords(boxes, img_shape):
-
- boxes[:, 0].clamp_(0, img_shape[1])
- boxes[:, 1].clamp_(0, img_shape[0])
- boxes[:, 2].clamp_(0, img_shape[1])
- boxes[:, 3].clamp_(0, img_shape[0])
- def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
-
- box2 = box2.T
-
- if x1y1x2y2:
- b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
- b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
- else:
- b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
- b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
- b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
- b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
-
- inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
- (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
-
- w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
- w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
- union = w1 * h1 + w2 * h2 - inter + eps
- iou = inter / union
- if GIoU or DIoU or CIoU:
- cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)
- ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)
- if CIoU or DIoU:
- c2 = cw ** 2 + ch ** 2 + eps
- rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
- (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4
- if DIoU:
- return iou - rho2 / c2
- elif CIoU:
- v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
- with torch.no_grad():
- alpha = v / (v - iou + (1 + eps))
- return iou - (rho2 / c2 + v * alpha)
- else:
- c_area = cw * ch + eps
- return iou - (c_area - union) / c_area
- else:
- return iou
- def box_iou(box1, box2):
-
- """
- Return intersection-over-union (Jaccard index) of boxes.
- Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
- Arguments:
- box1 (Tensor[N, 4])
- box2 (Tensor[M, 4])
- Returns:
- iou (Tensor[N, M]): the NxM matrix containing the pairwise
- IoU values for every element in boxes1 and boxes2
- """
- def box_area(box):
-
- return (box[2] - box[0]) * (box[3] - box[1])
- area1 = box_area(box1.T)
- area2 = box_area(box2.T)
-
- inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
- return inter / (area1[:, None] + area2 - inter)
- def wh_iou(wh1, wh2):
-
- wh1 = wh1[:, None]
- wh2 = wh2[None]
- inter = torch.min(wh1, wh2).prod(2)
- return inter / (wh1.prod(2) + wh2.prod(2) - inter)
- def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
- labels=(), max_det=300):
- """Runs Non-Maximum Suppression (NMS) on inference results
- Returns:
- list of detections, on (n,6) tensor per image [xyxy, conf, cls]
- """
- nc = prediction.shape[2] - 5
- xc = prediction[..., 4] > conf_thres
-
- assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
- assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
-
- min_wh, max_wh = 2, 4096
- max_nms = 30000
- time_limit = 10.0
- redundant = True
- multi_label &= nc > 1
- merge = False
- t = time.time()
- output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
- for xi, x in enumerate(prediction):
-
-
- x = x[xc[xi]]
-
- if labels and len(labels[xi]):
- l = labels[xi]
- v = torch.zeros((len(l), nc + 5), device=x.device)
- v[:, :4] = l[:, 1:5]
- v[:, 4] = 1.0
- v[range(len(l)), l[:, 0].long() + 5] = 1.0
- x = torch.cat((x, v), 0)
-
- if not x.shape[0]:
- continue
-
- x[:, 5:] *= x[:, 4:5]
-
- box = xywh2xyxy(x[:, :4])
-
- if multi_label:
- i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
- x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
- else:
- conf, j = x[:, 5:].max(1, keepdim=True)
- x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
-
- if classes is not None:
- x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
-
-
-
-
- n = x.shape[0]
- if not n:
- continue
- elif n > max_nms:
- x = x[x[:, 4].argsort(descending=True)[:max_nms]]
-
- c = x[:, 5:6] * (0 if agnostic else max_wh)
- boxes, scores = x[:, :4] + c, x[:, 4]
- i = torchvision.ops.nms(boxes, scores, iou_thres)
- if i.shape[0] > max_det:
- i = i[:max_det]
- if merge and (1 < n < 3E3):
-
- iou = box_iou(boxes[i], boxes) > iou_thres
- weights = iou * scores[None]
- x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)
- if redundant:
- i = i[iou.sum(1) > 1]
- output[xi] = x[i]
- if (time.time() - t) > time_limit:
- print(f'WARNING: NMS time limit {time_limit}s exceeded')
- break
- return output
- def strip_optimizer(f='best.pt', s=''):
-
- x = torch.load(f, map_location=torch.device('cpu'))
- if x.get('ema'):
- x['model'] = x['ema']
- for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates':
- x[k] = None
- x['epoch'] = -1
- x['model'].half()
- for p in x['model'].parameters():
- p.requires_grad = False
- torch.save(x, s or f)
- mb = os.path.getsize(s or f) / 1E6
- print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
- def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
-
- a = '%10s' * len(hyp) % tuple(hyp.keys())
- b = '%10.3g' * len(hyp) % tuple(hyp.values())
- c = '%10.4g' * len(results) % results
- print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
- if bucket:
- url = 'gs://%s/evolve.txt' % bucket
- if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
- os.system('gsutil cp %s .' % url)
- with open('evolve.txt', 'a') as f:
- f.write(c + b + '\n')
- x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0)
- x = x[np.argsort(-fitness(x))]
- np.savetxt('evolve.txt', x, '%10.3g')
-
- for i, k in enumerate(hyp.keys()):
- hyp[k] = float(x[0, i + 7])
- with open(yaml_file, 'w') as f:
- results = tuple(x[0, :7])
- c = '%10.4g' * len(results) % results
- f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
- yaml.safe_dump(hyp, f, sort_keys=False)
- if bucket:
- os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket))
- def apply_classifier(x, model, img, im0):
-
- im0 = [im0] if isinstance(im0, np.ndarray) else im0
- for i, d in enumerate(x):
- if d is not None and len(d):
- d = d.clone()
-
- b = xyxy2xywh(d[:, :4])
- b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)
- b[:, 2:] = b[:, 2:] * 1.3 + 30
- d[:, :4] = xywh2xyxy(b).long()
-
- scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
-
- pred_cls1 = d[:, 5].long()
- ims = []
- for j, a in enumerate(d):
- cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
- im = cv2.resize(cutout, (224, 224))
-
- im = im[:, :, ::-1].transpose(2, 0, 1)
- im = np.ascontiguousarray(im, dtype=np.float32)
- im /= 255.0
- ims.append(im)
- pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1)
- x[i] = x[i][pred_cls1 == pred_cls2]
- return x
- def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False, save=True):
-
- xyxy = torch.tensor(xyxy).view(-1, 4)
- b = xyxy2xywh(xyxy)
- if square:
- b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)
- b[:, 2:] = b[:, 2:] * gain + pad
- xyxy = xywh2xyxy(b).long()
- clip_coords(xyxy, im.shape)
- crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
- if save:
- cv2.imwrite(str(increment_path(file, mkdir=True).with_suffix('.jpg')), crop)
- return crop
- def increment_path(path, exist_ok=False, sep='', mkdir=False):
-
- path = Path(path)
- if path.exists() and not exist_ok:
- suffix = path.suffix
- path = path.with_suffix('')
- dirs = glob.glob(f"{path}{sep}*")
- matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
- i = [int(m.groups()[0]) for m in matches if m]
- n = max(i) + 1 if i else 2
- path = Path(f"{path}{sep}{n}{suffix}")
- dir = path if path.suffix == '' else path.parent
- if not dir.exists() and mkdir:
- dir.mkdir(parents=True, exist_ok=True)
- return path
|