| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692 | 
							- # YOLOv5 general utils
 
- import glob
 
- import logging
 
- import math
 
- import os
 
- import platform
 
- import random
 
- import re
 
- import subprocess
 
- import time
 
- from itertools import repeat
 
- from multiprocessing.pool import ThreadPool
 
- from pathlib import Path
 
- import cv2
 
- import numpy as np
 
- import pandas as pd
 
- import pkg_resources as pkg
 
- import torch
 
- import torchvision
 
- import yaml
 
- from utils.google_utils import gsutil_getsize
 
- from utils.metrics import fitness
 
- from utils.torch_utils import init_torch_seeds
 
- # Settings
 
- torch.set_printoptions(linewidth=320, precision=5, profile='long')
 
- np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format})  # format short g, %precision=5
 
- pd.options.display.max_columns = 10
 
- cv2.setNumThreads(0)  # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
 
- os.environ['NUMEXPR_MAX_THREADS'] = str(min(os.cpu_count(), 8))  # NumExpr max threads
 
- def set_logging(rank=-1, verbose=True):
 
-     logging.basicConfig(
 
-         format="%(message)s",
 
-         level=logging.INFO if (verbose and rank in [-1, 0]) else logging.WARN)
 
- def init_seeds(seed=0):
 
-     # Initialize random number generator (RNG) seeds
 
-     random.seed(seed)
 
-     np.random.seed(seed)
 
-     init_torch_seeds(seed)
 
- def get_latest_run(search_dir='.'):
 
-     # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
 
-     last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
 
-     return max(last_list, key=os.path.getctime) if last_list else ''
 
- def is_docker():
 
-     # Is environment a Docker container
 
-     return Path('/workspace').exists()  # or Path('/.dockerenv').exists()
 
- def is_colab():
 
-     # Is environment a Google Colab instance
 
-     try:
 
-         import google.colab
 
-         return True
 
-     except Exception as e:
 
-         return False
 
- def emojis(str=''):
 
-     # Return platform-dependent emoji-safe version of string
 
-     return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
 
- def file_size(file):
 
-     # Return file size in MB
 
-     return Path(file).stat().st_size / 1e6
 
- def check_online():
 
-     # Check internet connectivity
 
-     import socket
 
-     try:
 
-         socket.create_connection(("1.1.1.1", 443), 5)  # check host accesability
 
-         return True
 
-     except OSError:
 
-         return False
 
- def check_git_status():
 
-     # Recommend 'git pull' if code is out of date
 
-     print(colorstr('github: '), end='')
 
-     try:
 
-         assert Path('.git').exists(), 'skipping check (not a git repository)'
 
-         assert not is_docker(), 'skipping check (Docker image)'
 
-         assert check_online(), 'skipping check (offline)'
 
-         cmd = 'git fetch && git config --get remote.origin.url'
 
-         url = subprocess.check_output(cmd, shell=True).decode().strip().rstrip('.git')  # github repo url
 
-         branch = subprocess.check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip()  # checked out
 
-         n = int(subprocess.check_output(f'git rev-list {branch}..origin/master --count', shell=True))  # commits behind
 
-         if n > 0:
 
-             s = f"⚠️ WARNING: code is out of date by {n} commit{'s' * (n > 1)}. " \
 
-                 f"Use 'git pull' to update or 'git clone {url}' to download latest."
 
-         else:
 
-             s = f'up to date with {url} ✅'
 
-         print(emojis(s))  # emoji-safe
 
-     except Exception as e:
 
-         print(e)
 
- def check_python(minimum='3.7.0', required=True):
 
-     # Check current python version vs. required python version
 
-     current = platform.python_version()
 
-     result = pkg.parse_version(current) >= pkg.parse_version(minimum)
 
-     if required:
 
-         assert result, f'Python {minimum} required by YOLOv5, but Python {current} is currently installed'
 
-     return result
 
- def check_requirements(requirements='requirements.txt', exclude=()):
 
-     # Check installed dependencies meet requirements (pass *.txt file or list of packages)
 
-     prefix = colorstr('red', 'bold', 'requirements:')
 
-     check_python()  # check python version
 
-     if isinstance(requirements, (str, Path)):  # requirements.txt file
 
-         file = Path(requirements)
 
-         if not file.exists():
 
-             print(f"{prefix} {file.resolve()} not found, check failed.")
 
-             return
 
-         requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(file.open()) if x.name not in exclude]
 
-     else:  # list or tuple of packages
 
-         requirements = [x for x in requirements if x not in exclude]
 
-     n = 0  # number of packages updates
 
-     for r in requirements:
 
-         try:
 
-             pkg.require(r)
 
-         except Exception as e:  # DistributionNotFound or VersionConflict if requirements not met
 
-             n += 1
 
-             print(f"{prefix} {r} not found and is required by YOLOv5, attempting auto-update...")
 
-             try:
 
-                 print(subprocess.check_output(f"pip install '{r}'", shell=True).decode())
 
-             except Exception as e:
 
-                 print(f'{prefix} {e}')
 
-     if n:  # if packages updated
 
-         source = file.resolve() if 'file' in locals() else requirements
 
-         s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
 
-             f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
 
-         print(emojis(s))  # emoji-safe
 
- def check_img_size(img_size, s=32):
 
-     # Verify img_size is a multiple of stride s
 
-     new_size = make_divisible(img_size, int(s))  # ceil gs-multiple
 
-     if new_size != img_size:
 
-         print('WARNING: --img-size %g must be multiple of max stride %g, updating to %g' % (img_size, s, new_size))
 
-     return new_size
 
- def check_imshow():
 
-     # Check if environment supports image displays
 
-     try:
 
-         assert not is_docker(), 'cv2.imshow() is disabled in Docker environments'
 
-         assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments'
 
-         cv2.imshow('test', np.zeros((1, 1, 3)))
 
-         cv2.waitKey(1)
 
-         cv2.destroyAllWindows()
 
-         cv2.waitKey(1)
 
-         return True
 
-     except Exception as e:
 
-         print(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
 
-         return False
 
- def check_file(file):
 
-     # Search for file if not found
 
-     if Path(file).is_file() or file == '':
 
-         return file
 
-     else:
 
-         files = glob.glob('./**/' + file, recursive=True)  # find file
 
-         assert len(files), f'File Not Found: {file}'  # assert file was found
 
-         assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}"  # assert unique
 
-         return files[0]  # return file
 
- def check_dataset(dict):
 
-     # Download dataset if not found locally
 
-     val, s = dict.get('val'), dict.get('download')
 
-     if val and len(val):
 
-         val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])]  # val path
 
-         if not all(x.exists() for x in val):
 
-             print('\nWARNING: Dataset not found, nonexistent paths: %s' % [str(x) for x in val if not x.exists()])
 
-             if s and len(s):  # download script
 
-                 if s.startswith('http') and s.endswith('.zip'):  # URL
 
-                     f = Path(s).name  # filename
 
-                     print(f'Downloading {s} ...')
 
-                     torch.hub.download_url_to_file(s, f)
 
-                     r = os.system(f'unzip -q {f} -d ../ && rm {f}')  # unzip
 
-                 elif s.startswith('bash '):  # bash script
 
-                     print(f'Running {s} ...')
 
-                     r = os.system(s)
 
-                 else:  # python script
 
-                     r = exec(s)  # return None
 
-                 print('Dataset autodownload %s\n' % ('success' if r in (0, None) else 'failure'))  # print result
 
-             else:
 
-                 raise Exception('Dataset not found.')
 
- def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
 
-     # Multi-threaded file download and unzip function
 
-     def download_one(url, dir):
 
-         # Download 1 file
 
-         f = dir / Path(url).name  # filename
 
-         if not f.exists():
 
-             print(f'Downloading {url} to {f}...')
 
-             if curl:
 
-                 os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -")  # curl download, retry and resume on fail
 
-             else:
 
-                 torch.hub.download_url_to_file(url, f, progress=True)  # torch download
 
-         if unzip and f.suffix in ('.zip', '.gz'):
 
-             print(f'Unzipping {f}...')
 
-             if f.suffix == '.zip':
 
-                 s = f'unzip -qo {f} -d {dir} && rm {f}'  # unzip -quiet -overwrite
 
-             elif f.suffix == '.gz':
 
-                 s = f'tar xfz {f} --directory {f.parent}'  # unzip
 
-             if delete:  # delete zip file after unzip
 
-                 s += f' && rm {f}'
 
-             os.system(s)
 
-     dir = Path(dir)
 
-     dir.mkdir(parents=True, exist_ok=True)  # make directory
 
-     if threads > 1:
 
-         pool = ThreadPool(threads)
 
-         pool.imap(lambda x: download_one(*x), zip(url, repeat(dir)))  # multi-threaded
 
-         pool.close()
 
-         pool.join()
 
-     else:
 
-         for u in tuple(url) if isinstance(url, str) else url:
 
-             download_one(u, dir)
 
- def make_divisible(x, divisor):
 
-     # Returns x evenly divisible by divisor
 
-     return math.ceil(x / divisor) * divisor
 
- def clean_str(s):
 
-     # Cleans a string by replacing special characters with underscore _
 
-     return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
 
- def one_cycle(y1=0.0, y2=1.0, steps=100):
 
-     # lambda function for sinusoidal ramp from y1 to y2
 
-     return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
 
- def colorstr(*input):
 
-     # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e.  colorstr('blue', 'hello world')
 
-     *args, string = input if len(input) > 1 else ('blue', 'bold', input[0])  # color arguments, string
 
-     colors = {'black': '\033[30m',  # basic colors
 
-               'red': '\033[31m',
 
-               'green': '\033[32m',
 
-               'yellow': '\033[33m',
 
-               'blue': '\033[34m',
 
-               'magenta': '\033[35m',
 
-               'cyan': '\033[36m',
 
-               'white': '\033[37m',
 
-               'bright_black': '\033[90m',  # bright colors
 
-               'bright_red': '\033[91m',
 
-               'bright_green': '\033[92m',
 
-               'bright_yellow': '\033[93m',
 
-               'bright_blue': '\033[94m',
 
-               'bright_magenta': '\033[95m',
 
-               'bright_cyan': '\033[96m',
 
-               'bright_white': '\033[97m',
 
-               'end': '\033[0m',  # misc
 
-               'bold': '\033[1m',
 
-               'underline': '\033[4m'}
 
-     return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
 
- def labels_to_class_weights(labels, nc=80):
 
-     # Get class weights (inverse frequency) from training labels
 
-     if labels[0] is None:  # no labels loaded
 
-         return torch.Tensor()
 
-     labels = np.concatenate(labels, 0)  # labels.shape = (866643, 5) for COCO
 
-     classes = labels[:, 0].astype(np.int)  # labels = [class xywh]
 
-     weights = np.bincount(classes, minlength=nc)  # occurrences per class
 
-     # Prepend gridpoint count (for uCE training)
 
-     # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum()  # gridpoints per image
 
-     # weights = np.hstack([gpi * len(labels)  - weights.sum() * 9, weights * 9]) ** 0.5  # prepend gridpoints to start
 
-     weights[weights == 0] = 1  # replace empty bins with 1
 
-     weights = 1 / weights  # number of targets per class
 
-     weights /= weights.sum()  # normalize
 
-     return torch.from_numpy(weights)
 
- def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
 
-     # Produces image weights based on class_weights and image contents
 
-     class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
 
-     image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
 
-     # index = random.choices(range(n), weights=image_weights, k=1)  # weight image sample
 
-     return image_weights
 
- def coco80_to_coco91_class():  # converts 80-index (val2014) to 91-index (paper)
 
-     # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
 
-     # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
 
-     # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
 
-     # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]  # darknet to coco
 
-     # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]  # coco to darknet
 
-     x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
 
-          35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
 
-          64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
 
-     return x
 
- def xyxy2xywh(x):
 
-     # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
 
-     y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
 
-     y[:, 0] = (x[:, 0] + x[:, 2]) / 2  # x center
 
-     y[:, 1] = (x[:, 1] + x[:, 3]) / 2  # y center
 
-     y[:, 2] = x[:, 2] - x[:, 0]  # width
 
-     y[:, 3] = x[:, 3] - x[:, 1]  # height
 
-     return y
 
- def xywh2xyxy(x):
 
-     # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
 
-     y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
 
-     y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
 
-     y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
 
-     y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
 
-     y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
 
-     return y
 
- def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
 
-     # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
 
-     y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
 
-     y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw  # top left x
 
-     y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh  # top left y
 
-     y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw  # bottom right x
 
-     y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh  # bottom right y
 
-     return y
 
- def xyn2xy(x, w=640, h=640, padw=0, padh=0):
 
-     # Convert normalized segments into pixel segments, shape (n,2)
 
-     y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
 
-     y[:, 0] = w * x[:, 0] + padw  # top left x
 
-     y[:, 1] = h * x[:, 1] + padh  # top left y
 
-     return y
 
- def segment2box(segment, width=640, height=640):
 
-     # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
 
-     x, y = segment.T  # segment xy
 
-     inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
 
-     x, y, = x[inside], y[inside]
 
-     return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4))  # xyxy
 
- def segments2boxes(segments):
 
-     # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
 
-     boxes = []
 
-     for s in segments:
 
-         x, y = s.T  # segment xy
 
-         boxes.append([x.min(), y.min(), x.max(), y.max()])  # cls, xyxy
 
-     return xyxy2xywh(np.array(boxes))  # cls, xywh
 
- def resample_segments(segments, n=1000):
 
-     # Up-sample an (n,2) segment
 
-     for i, s in enumerate(segments):
 
-         x = np.linspace(0, len(s) - 1, n)
 
-         xp = np.arange(len(s))
 
-         segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T  # segment xy
 
-     return segments
 
- def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
 
-     # Rescale coords (xyxy) from img1_shape to img0_shape
 
-     if ratio_pad is None:  # calculate from img0_shape
 
-         gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
 
-         pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
 
-     else:
 
-         gain = ratio_pad[0][0]
 
-         pad = ratio_pad[1]
 
-     coords[:, [0, 2]] -= pad[0]  # x padding
 
-     coords[:, [1, 3]] -= pad[1]  # y padding
 
-     coords[:, :4] /= gain
 
-     clip_coords(coords, img0_shape)
 
-     return coords
 
- def clip_coords(boxes, img_shape):
 
-     # Clip bounding xyxy bounding boxes to image shape (height, width)
 
-     boxes[:, 0].clamp_(0, img_shape[1])  # x1
 
-     boxes[:, 1].clamp_(0, img_shape[0])  # y1
 
-     boxes[:, 2].clamp_(0, img_shape[1])  # x2
 
-     boxes[:, 3].clamp_(0, img_shape[0])  # y2
 
- def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
 
-     # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
 
-     box2 = box2.T
 
-     # Get the coordinates of bounding boxes
 
-     if x1y1x2y2:  # x1, y1, x2, y2 = box1
 
-         b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
 
-         b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
 
-     else:  # transform from xywh to xyxy
 
-         b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
 
-         b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
 
-         b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
 
-         b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
 
-     # Intersection area
 
-     inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
 
-             (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
 
-     # Union Area
 
-     w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
 
-     w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
 
-     union = w1 * h1 + w2 * h2 - inter + eps
 
-     iou = inter / union
 
-     if GIoU or DIoU or CIoU:
 
-         cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
 
-         ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
 
-         if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
 
-             c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
 
-             rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
 
-                     (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center distance squared
 
-             if DIoU:
 
-                 return iou - rho2 / c2  # DIoU
 
-             elif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
 
-                 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
 
-                 with torch.no_grad():
 
-                     alpha = v / (v - iou + (1 + eps))
 
-                 return iou - (rho2 / c2 + v * alpha)  # CIoU
 
-         else:  # GIoU https://arxiv.org/pdf/1902.09630.pdf
 
-             c_area = cw * ch + eps  # convex area
 
-             return iou - (c_area - union) / c_area  # GIoU
 
-     else:
 
-         return iou  # IoU
 
- def box_iou(box1, box2):
 
-     # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
 
-     """
 
-     Return intersection-over-union (Jaccard index) of boxes.
 
-     Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
 
-     Arguments:
 
-         box1 (Tensor[N, 4])
 
-         box2 (Tensor[M, 4])
 
-     Returns:
 
-         iou (Tensor[N, M]): the NxM matrix containing the pairwise
 
-             IoU values for every element in boxes1 and boxes2
 
-     """
 
-     def box_area(box):
 
-         # box = 4xn
 
-         return (box[2] - box[0]) * (box[3] - box[1])
 
-     area1 = box_area(box1.T)
 
-     area2 = box_area(box2.T)
 
-     # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
 
-     inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
 
-     return inter / (area1[:, None] + area2 - inter)  # iou = inter / (area1 + area2 - inter)
 
- def wh_iou(wh1, wh2):
 
-     # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
 
-     wh1 = wh1[:, None]  # [N,1,2]
 
-     wh2 = wh2[None]  # [1,M,2]
 
-     inter = torch.min(wh1, wh2).prod(2)  # [N,M]
 
-     return inter / (wh1.prod(2) + wh2.prod(2) - inter)  # iou = inter / (area1 + area2 - inter)
 
- def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
 
-                         labels=(), max_det=300):
 
-     """Runs Non-Maximum Suppression (NMS) on inference results
 
-     Returns:
 
-          list of detections, on (n,6) tensor per image [xyxy, conf, cls]
 
-     """
 
-     nc = prediction.shape[2] - 5  # number of classes
 
-     xc = prediction[..., 4] > conf_thres  # candidates
 
-     # Checks
 
-     assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
 
-     assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
 
-     # Settings
 
-     min_wh, max_wh = 2, 4096  # (pixels) minimum and maximum box width and height
 
-     max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
 
-     time_limit = 10.0  # seconds to quit after
 
-     redundant = True  # require redundant detections
 
-     multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
 
-     merge = False  # use merge-NMS
 
-     t = time.time()
 
-     output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
 
-     for xi, x in enumerate(prediction):  # image index, image inference
 
-         # Apply constraints
 
-         # x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
 
-         x = x[xc[xi]]  # confidence
 
-         # Cat apriori labels if autolabelling
 
-         if labels and len(labels[xi]):
 
-             l = labels[xi]
 
-             v = torch.zeros((len(l), nc + 5), device=x.device)
 
-             v[:, :4] = l[:, 1:5]  # box
 
-             v[:, 4] = 1.0  # conf
 
-             v[range(len(l)), l[:, 0].long() + 5] = 1.0  # cls
 
-             x = torch.cat((x, v), 0)
 
-         # If none remain process next image
 
-         if not x.shape[0]:
 
-             continue
 
-         # Compute conf
 
-         x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf
 
-         # Box (center x, center y, width, height) to (x1, y1, x2, y2)
 
-         box = xywh2xyxy(x[:, :4])
 
-         # Detections matrix nx6 (xyxy, conf, cls)
 
-         if multi_label:
 
-             i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
 
-             x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
 
-         else:  # best class only
 
-             conf, j = x[:, 5:].max(1, keepdim=True)
 
-             x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
 
-         # Filter by class
 
-         if classes is not None:
 
-             x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
 
-         # Apply finite constraint
 
-         # if not torch.isfinite(x).all():
 
-         #     x = x[torch.isfinite(x).all(1)]
 
-         # Check shape
 
-         n = x.shape[0]  # number of boxes
 
-         if not n:  # no boxes
 
-             continue
 
-         elif n > max_nms:  # excess boxes
 
-             x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence
 
-         # Batched NMS
 
-         c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
 
-         boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
 
-         i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
 
-         if i.shape[0] > max_det:  # limit detections
 
-             i = i[:max_det]
 
-         if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
 
-             # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
 
-             iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
 
-             weights = iou * scores[None]  # box weights
 
-             x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
 
-             if redundant:
 
-                 i = i[iou.sum(1) > 1]  # require redundancy
 
-         output[xi] = x[i]
 
-         if (time.time() - t) > time_limit:
 
-             print(f'WARNING: NMS time limit {time_limit}s exceeded')
 
-             break  # time limit exceeded
 
-     return output
 
- def strip_optimizer(f='best.pt', s=''):  # from utils.general import *; strip_optimizer()
 
-     # Strip optimizer from 'f' to finalize training, optionally save as 's'
 
-     x = torch.load(f, map_location=torch.device('cpu'))
 
-     if x.get('ema'):
 
-         x['model'] = x['ema']  # replace model with ema
 
-     for k in 'optimizer', 'training_results', 'wandb_id', 'ema', 'updates':  # keys
 
-         x[k] = None
 
-     x['epoch'] = -1
 
-     x['model'].half()  # to FP16
 
-     for p in x['model'].parameters():
 
-         p.requires_grad = False
 
-     torch.save(x, s or f)
 
-     mb = os.path.getsize(s or f) / 1E6  # filesize
 
-     print(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
 
- def print_mutation(hyp, results, yaml_file='hyp_evolved.yaml', bucket=''):
 
-     # Print mutation results to evolve.txt (for use with train.py --evolve)
 
-     a = '%10s' * len(hyp) % tuple(hyp.keys())  # hyperparam keys
 
-     b = '%10.3g' * len(hyp) % tuple(hyp.values())  # hyperparam values
 
-     c = '%10.4g' * len(results) % results  # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
 
-     print('\n%s\n%s\nEvolved fitness: %s\n' % (a, b, c))
 
-     if bucket:
 
-         url = 'gs://%s/evolve.txt' % bucket
 
-         if gsutil_getsize(url) > (os.path.getsize('evolve.txt') if os.path.exists('evolve.txt') else 0):
 
-             os.system('gsutil cp %s .' % url)  # download evolve.txt if larger than local
 
-     with open('evolve.txt', 'a') as f:  # append result
 
-         f.write(c + b + '\n')
 
-     x = np.unique(np.loadtxt('evolve.txt', ndmin=2), axis=0)  # load unique rows
 
-     x = x[np.argsort(-fitness(x))]  # sort
 
-     np.savetxt('evolve.txt', x, '%10.3g')  # save sort by fitness
 
-     # Save yaml
 
-     for i, k in enumerate(hyp.keys()):
 
-         hyp[k] = float(x[0, i + 7])
 
-     with open(yaml_file, 'w') as f:
 
-         results = tuple(x[0, :7])
 
-         c = '%10.4g' * len(results) % results  # results (P, R, mAP@0.5, mAP@0.5:0.95, val_losses x 3)
 
-         f.write('# Hyperparameter Evolution Results\n# Generations: %g\n# Metrics: ' % len(x) + c + '\n\n')
 
-         yaml.safe_dump(hyp, f, sort_keys=False)
 
-     if bucket:
 
-         os.system('gsutil cp evolve.txt %s gs://%s' % (yaml_file, bucket))  # upload
 
- def apply_classifier(x, model, img, im0):
 
-     # Apply a second stage classifier to yolo outputs
 
-     im0 = [im0] if isinstance(im0, np.ndarray) else im0
 
-     for i, d in enumerate(x):  # per image
 
-         if d is not None and len(d):
 
-             d = d.clone()
 
-             # Reshape and pad cutouts
 
-             b = xyxy2xywh(d[:, :4])  # boxes
 
-             b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # rectangle to square
 
-             b[:, 2:] = b[:, 2:] * 1.3 + 30  # pad
 
-             d[:, :4] = xywh2xyxy(b).long()
 
-             # Rescale boxes from img_size to im0 size
 
-             scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
 
-             # Classes
 
-             pred_cls1 = d[:, 5].long()
 
-             ims = []
 
-             for j, a in enumerate(d):  # per item
 
-                 cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
 
-                 im = cv2.resize(cutout, (224, 224))  # BGR
 
-                 # cv2.imwrite('test%i.jpg' % j, cutout)
 
-                 im = im[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
 
-                 im = np.ascontiguousarray(im, dtype=np.float32)  # uint8 to float32
 
-                 im /= 255.0  # 0 - 255 to 0.0 - 1.0
 
-                 ims.append(im)
 
-             pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1)  # classifier prediction
 
-             x[i] = x[i][pred_cls1 == pred_cls2]  # retain matching class detections
 
-     return x
 
- def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False, save=True):
 
-     # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
 
-     xyxy = torch.tensor(xyxy).view(-1, 4)
 
-     b = xyxy2xywh(xyxy)  # boxes
 
-     if square:
 
-         b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # attempt rectangle to square
 
-     b[:, 2:] = b[:, 2:] * gain + pad  # box wh * gain + pad
 
-     xyxy = xywh2xyxy(b).long()
 
-     clip_coords(xyxy, im.shape)
 
-     crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
 
-     if save:
 
-         cv2.imwrite(str(increment_path(file, mkdir=True).with_suffix('.jpg')), crop)
 
-     return crop
 
- def increment_path(path, exist_ok=False, sep='', mkdir=False):
 
-     # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
 
-     path = Path(path)  # os-agnostic
 
-     if path.exists() and not exist_ok:
 
-         suffix = path.suffix
 
-         path = path.with_suffix('')
 
-         dirs = glob.glob(f"{path}{sep}*")  # similar paths
 
-         matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
 
-         i = [int(m.groups()[0]) for m in matches if m]  # indices
 
-         n = max(i) + 1 if i else 2  # increment number
 
-         path = Path(f"{path}{sep}{n}{suffix}")  # update path
 
-     dir = path if path.suffix == '' else path.parent  # directory
 
-     if not dir.exists() and mkdir:
 
-         dir.mkdir(parents=True, exist_ok=True)  # make directory
 
-     return path
 
 
  |