|
@@ -0,0 +1,1067 @@
|
|
|
+
|
|
|
+
|
|
|
+import glob
|
|
|
+import logging
|
|
|
+import math
|
|
|
+import os
|
|
|
+import random
|
|
|
+import shutil
|
|
|
+import time
|
|
|
+from itertools import repeat
|
|
|
+from multiprocessing.pool import ThreadPool
|
|
|
+from pathlib import Path
|
|
|
+from threading import Thread
|
|
|
+
|
|
|
+import cv2
|
|
|
+import numpy as np
|
|
|
+import torch
|
|
|
+import torch.nn.functional as F
|
|
|
+from PIL import Image, ExifTags
|
|
|
+from torch.utils.data import Dataset
|
|
|
+from tqdm import tqdm
|
|
|
+
|
|
|
+from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \
|
|
|
+ resample_segments, clean_str
|
|
|
+from utils.torch_utils import torch_distributed_zero_first
|
|
|
+
|
|
|
+
|
|
|
+help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
|
|
+img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo']
|
|
|
+vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv']
|
|
|
+logger = logging.getLogger(__name__)
|
|
|
+
|
|
|
+
|
|
|
+for orientation in ExifTags.TAGS.keys():
|
|
|
+ if ExifTags.TAGS[orientation] == 'Orientation':
|
|
|
+ break
|
|
|
+
|
|
|
+
|
|
|
+def get_hash(files):
|
|
|
+
|
|
|
+ return sum(os.path.getsize(f) for f in files if os.path.isfile(f))
|
|
|
+
|
|
|
+
|
|
|
+def exif_size(img):
|
|
|
+
|
|
|
+ s = img.size
|
|
|
+ try:
|
|
|
+ rotation = dict(img._getexif().items())[orientation]
|
|
|
+ if rotation == 6:
|
|
|
+ s = (s[1], s[0])
|
|
|
+ elif rotation == 8:
|
|
|
+ s = (s[1], s[0])
|
|
|
+ except:
|
|
|
+ pass
|
|
|
+
|
|
|
+ return s
|
|
|
+
|
|
|
+
|
|
|
+def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False,
|
|
|
+ rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''):
|
|
|
+
|
|
|
+ with torch_distributed_zero_first(rank):
|
|
|
+ dataset = LoadImagesAndLabels(path, imgsz, batch_size,
|
|
|
+ augment=augment,
|
|
|
+ hyp=hyp,
|
|
|
+ rect=rect,
|
|
|
+ cache_images=cache,
|
|
|
+ single_cls=opt.single_cls,
|
|
|
+ stride=int(stride),
|
|
|
+ pad=pad,
|
|
|
+ image_weights=image_weights,
|
|
|
+ prefix=prefix)
|
|
|
+
|
|
|
+ batch_size = min(batch_size, len(dataset))
|
|
|
+ nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers])
|
|
|
+ sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None
|
|
|
+ loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader
|
|
|
+
|
|
|
+ dataloader = loader(dataset,
|
|
|
+ batch_size=batch_size,
|
|
|
+ num_workers=nw,
|
|
|
+ sampler=sampler,
|
|
|
+ pin_memory=True,
|
|
|
+ collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn)
|
|
|
+ return dataloader, dataset
|
|
|
+
|
|
|
+
|
|
|
+class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader):
|
|
|
+ """ Dataloader that reuses workers
|
|
|
+
|
|
|
+ Uses same syntax as vanilla DataLoader
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(self, *args, **kwargs):
|
|
|
+ super().__init__(*args, **kwargs)
|
|
|
+ object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
|
|
+ self.iterator = super().__iter__()
|
|
|
+
|
|
|
+ def __len__(self):
|
|
|
+ return len(self.batch_sampler.sampler)
|
|
|
+
|
|
|
+ def __iter__(self):
|
|
|
+ for i in range(len(self)):
|
|
|
+ yield next(self.iterator)
|
|
|
+
|
|
|
+
|
|
|
+class _RepeatSampler(object):
|
|
|
+ """ Sampler that repeats forever
|
|
|
+
|
|
|
+ Args:
|
|
|
+ sampler (Sampler)
|
|
|
+ """
|
|
|
+
|
|
|
+ def __init__(self, sampler):
|
|
|
+ self.sampler = sampler
|
|
|
+
|
|
|
+ def __iter__(self):
|
|
|
+ while True:
|
|
|
+ yield from iter(self.sampler)
|
|
|
+
|
|
|
+
|
|
|
+class LoadImages:
|
|
|
+ def __init__(self, path, img_size=640, stride=32):
|
|
|
+ p = str(Path(path).absolute())
|
|
|
+ if '*' in p:
|
|
|
+ files = sorted(glob.glob(p, recursive=True))
|
|
|
+ elif os.path.isdir(p):
|
|
|
+ files = sorted(glob.glob(os.path.join(p, '*.*')))
|
|
|
+ elif os.path.isfile(p):
|
|
|
+ files = [p]
|
|
|
+ else:
|
|
|
+ raise Exception(f'ERROR: {p} does not exist')
|
|
|
+
|
|
|
+ images = [x for x in files if x.split('.')[-1].lower() in img_formats]
|
|
|
+ videos = [x for x in files if x.split('.')[-1].lower() in vid_formats]
|
|
|
+ ni, nv = len(images), len(videos)
|
|
|
+
|
|
|
+ self.img_size = img_size
|
|
|
+ self.stride = stride
|
|
|
+ self.files = images + videos
|
|
|
+ self.nf = ni + nv
|
|
|
+ self.video_flag = [False] * ni + [True] * nv
|
|
|
+ self.mode = 'image'
|
|
|
+ if any(videos):
|
|
|
+ self.new_video(videos[0])
|
|
|
+ else:
|
|
|
+ self.cap = None
|
|
|
+ assert self.nf > 0, f'No images or videos found in {p}. ' \
|
|
|
+ f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}'
|
|
|
+
|
|
|
+ def __iter__(self):
|
|
|
+ self.count = 0
|
|
|
+ return self
|
|
|
+
|
|
|
+ def __next__(self):
|
|
|
+ if self.count == self.nf:
|
|
|
+ raise StopIteration
|
|
|
+ path = self.files[self.count]
|
|
|
+
|
|
|
+ if self.video_flag[self.count]:
|
|
|
+
|
|
|
+ self.mode = 'video'
|
|
|
+ ret_val, img0 = self.cap.read()
|
|
|
+ if not ret_val:
|
|
|
+ self.count += 1
|
|
|
+ self.cap.release()
|
|
|
+ if self.count == self.nf:
|
|
|
+ raise StopIteration
|
|
|
+ else:
|
|
|
+ path = self.files[self.count]
|
|
|
+ self.new_video(path)
|
|
|
+ ret_val, img0 = self.cap.read()
|
|
|
+
|
|
|
+ self.frame += 1
|
|
|
+ print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ', end='')
|
|
|
+
|
|
|
+ else:
|
|
|
+
|
|
|
+ self.count += 1
|
|
|
+ img0 = cv2.imread(path)
|
|
|
+ assert img0 is not None, 'Image Not Found ' + path
|
|
|
+ print(f'image {self.count}/{self.nf} {path}: ', end='')
|
|
|
+
|
|
|
+
|
|
|
+ img = letterbox(img0, self.img_size, stride=self.stride)[0]
|
|
|
+
|
|
|
+
|
|
|
+ img = img[:, :, ::-1].transpose(2, 0, 1)
|
|
|
+ img = np.ascontiguousarray(img)
|
|
|
+
|
|
|
+ return path, img, img0, self.cap
|
|
|
+
|
|
|
+ def new_video(self, path):
|
|
|
+ self.frame = 0
|
|
|
+ self.cap = cv2.VideoCapture(path)
|
|
|
+ self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
+
|
|
|
+ def __len__(self):
|
|
|
+ return self.nf
|
|
|
+
|
|
|
+
|
|
|
+class LoadWebcam:
|
|
|
+ def __init__(self, pipe='0', img_size=640, stride=32):
|
|
|
+ self.img_size = img_size
|
|
|
+ self.stride = stride
|
|
|
+
|
|
|
+ if pipe.isnumeric():
|
|
|
+ pipe = eval(pipe)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ self.pipe = pipe
|
|
|
+ self.cap = cv2.VideoCapture(pipe)
|
|
|
+ self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3)
|
|
|
+
|
|
|
+ def __iter__(self):
|
|
|
+ self.count = -1
|
|
|
+ return self
|
|
|
+
|
|
|
+ def __next__(self):
|
|
|
+ self.count += 1
|
|
|
+ if cv2.waitKey(1) == ord('q'):
|
|
|
+ self.cap.release()
|
|
|
+ cv2.destroyAllWindows()
|
|
|
+ raise StopIteration
|
|
|
+
|
|
|
+
|
|
|
+ if self.pipe == 0:
|
|
|
+ ret_val, img0 = self.cap.read()
|
|
|
+ img0 = cv2.flip(img0, 1)
|
|
|
+ else:
|
|
|
+ n = 0
|
|
|
+ while True:
|
|
|
+ n += 1
|
|
|
+ self.cap.grab()
|
|
|
+ if n % 30 == 0:
|
|
|
+ ret_val, img0 = self.cap.retrieve()
|
|
|
+ if ret_val:
|
|
|
+ break
|
|
|
+
|
|
|
+
|
|
|
+ assert ret_val, f'Camera Error {self.pipe}'
|
|
|
+ img_path = 'webcam.jpg'
|
|
|
+ print(f'webcam {self.count}: ', end='')
|
|
|
+
|
|
|
+
|
|
|
+ img = letterbox(img0, self.img_size, stride=self.stride)[0]
|
|
|
+
|
|
|
+
|
|
|
+ img = img[:, :, ::-1].transpose(2, 0, 1)
|
|
|
+ img = np.ascontiguousarray(img)
|
|
|
+
|
|
|
+ return img_path, img, img0, None
|
|
|
+
|
|
|
+ def __len__(self):
|
|
|
+ return 0
|
|
|
+
|
|
|
+
|
|
|
+class LoadStreams:
|
|
|
+ def __init__(self, sources='streams.txt', img_size=640, stride=32):
|
|
|
+ self.mode = 'stream'
|
|
|
+ self.img_size = img_size
|
|
|
+ self.stride = stride
|
|
|
+
|
|
|
+ if os.path.isfile(sources):
|
|
|
+ with open(sources, 'r') as f:
|
|
|
+ sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
|
|
|
+ else:
|
|
|
+ sources = [sources]
|
|
|
+
|
|
|
+ n = len(sources)
|
|
|
+ self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
|
|
|
+ self.sources = [clean_str(x) for x in sources]
|
|
|
+ for i, s in enumerate(sources):
|
|
|
+
|
|
|
+ print(f'{i + 1}/{n}: {s}... ', end='')
|
|
|
+ if 'youtube.com/' in s or 'youtu.be/' in s:
|
|
|
+ check_requirements(('pafy', 'youtube_dl'))
|
|
|
+ import pafy
|
|
|
+ s = pafy.new(s).getbest(preftype="mp4").url
|
|
|
+ s = eval(s) if s.isnumeric() else s
|
|
|
+ cap = cv2.VideoCapture(s)
|
|
|
+ assert cap.isOpened(), f'Failed to open {s}'
|
|
|
+ w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
|
+ h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
|
+ self.fps[i] = max(cap.get(cv2.CAP_PROP_FPS) % 100, 0) or 30.0
|
|
|
+ self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf')
|
|
|
+
|
|
|
+ _, self.imgs[i] = cap.read()
|
|
|
+ self.threads[i] = Thread(target=self.update, args=([i, cap]), daemon=True)
|
|
|
+ print(f" success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
|
|
|
+ self.threads[i].start()
|
|
|
+ print('')
|
|
|
+
|
|
|
+
|
|
|
+ s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0)
|
|
|
+ self.rect = np.unique(s, axis=0).shape[0] == 1
|
|
|
+ if not self.rect:
|
|
|
+ print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.')
|
|
|
+
|
|
|
+ def update(self, i, cap):
|
|
|
+
|
|
|
+ n, f = 0, self.frames[i]
|
|
|
+ while cap.isOpened() and n < f:
|
|
|
+ n += 1
|
|
|
+
|
|
|
+ cap.grab()
|
|
|
+ if n % 4:
|
|
|
+ success, im = cap.retrieve()
|
|
|
+ self.imgs[i] = im if success else self.imgs[i] * 0
|
|
|
+ time.sleep(1 / self.fps[i])
|
|
|
+
|
|
|
+ def __iter__(self):
|
|
|
+ self.count = -1
|
|
|
+ return self
|
|
|
+
|
|
|
+ def __next__(self):
|
|
|
+ self.count += 1
|
|
|
+ if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'):
|
|
|
+ cv2.destroyAllWindows()
|
|
|
+ raise StopIteration
|
|
|
+
|
|
|
+
|
|
|
+ img0 = self.imgs.copy()
|
|
|
+ img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0]
|
|
|
+
|
|
|
+
|
|
|
+ img = np.stack(img, 0)
|
|
|
+
|
|
|
+
|
|
|
+ img = img[:, :, :, ::-1].transpose(0, 3, 1, 2)
|
|
|
+ img = np.ascontiguousarray(img)
|
|
|
+
|
|
|
+ return self.sources, img, img0, None
|
|
|
+
|
|
|
+ def __len__(self):
|
|
|
+ return 0
|
|
|
+
|
|
|
+
|
|
|
+def img2label_paths(img_paths):
|
|
|
+
|
|
|
+ sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep
|
|
|
+ return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths]
|
|
|
+
|
|
|
+
|
|
|
+class LoadImagesAndLabels(Dataset):
|
|
|
+ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
|
|
|
+ cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
|
|
|
+ self.img_size = img_size
|
|
|
+ self.augment = augment
|
|
|
+ self.hyp = hyp
|
|
|
+ self.image_weights = image_weights
|
|
|
+ self.rect = False if image_weights else rect
|
|
|
+ self.mosaic = self.augment and not self.rect
|
|
|
+ self.mosaic_border = [-img_size // 2, -img_size // 2]
|
|
|
+ self.stride = stride
|
|
|
+ self.path = path
|
|
|
+
|
|
|
+ try:
|
|
|
+ f = []
|
|
|
+ for p in path if isinstance(path, list) else [path]:
|
|
|
+ p = Path(p)
|
|
|
+ if p.is_dir():
|
|
|
+ f += glob.glob(str(p / '**' / '*.*'), recursive=True)
|
|
|
+
|
|
|
+ elif p.is_file():
|
|
|
+ with open(p, 'r') as t:
|
|
|
+ t = t.read().strip().splitlines()
|
|
|
+ parent = str(p.parent) + os.sep
|
|
|
+ f += [x.replace('./', parent) if x.startswith('./') else x for x in t]
|
|
|
+
|
|
|
+ else:
|
|
|
+ raise Exception(f'{prefix}{p} does not exist')
|
|
|
+ self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats])
|
|
|
+
|
|
|
+ assert self.img_files, f'{prefix}No images found'
|
|
|
+ except Exception as e:
|
|
|
+ raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}')
|
|
|
+
|
|
|
+
|
|
|
+ self.label_files = img2label_paths(self.img_files)
|
|
|
+ cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
|
|
|
+ if cache_path.is_file():
|
|
|
+ cache, exists = torch.load(cache_path), True
|
|
|
+ if cache['hash'] != get_hash(self.label_files + self.img_files) or 'version' not in cache:
|
|
|
+ cache, exists = self.cache_labels(cache_path, prefix), False
|
|
|
+ else:
|
|
|
+ cache, exists = self.cache_labels(cache_path, prefix), False
|
|
|
+
|
|
|
+
|
|
|
+ nf, nm, ne, nc, n = cache.pop('results')
|
|
|
+ if exists:
|
|
|
+ d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted"
|
|
|
+ tqdm(None, desc=prefix + d, total=n, initial=n)
|
|
|
+ assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}'
|
|
|
+
|
|
|
+
|
|
|
+ cache.pop('hash')
|
|
|
+ cache.pop('version')
|
|
|
+ labels, shapes, self.segments = zip(*cache.values())
|
|
|
+ self.labels = list(labels)
|
|
|
+ self.shapes = np.array(shapes, dtype=np.float64)
|
|
|
+ self.img_files = list(cache.keys())
|
|
|
+ self.label_files = img2label_paths(cache.keys())
|
|
|
+ if single_cls:
|
|
|
+ for x in self.labels:
|
|
|
+ x[:, 0] = 0
|
|
|
+
|
|
|
+ n = len(shapes)
|
|
|
+ bi = np.floor(np.arange(n) / batch_size).astype(np.int)
|
|
|
+ nb = bi[-1] + 1
|
|
|
+ self.batch = bi
|
|
|
+ self.n = n
|
|
|
+ self.indices = range(n)
|
|
|
+
|
|
|
+
|
|
|
+ if self.rect:
|
|
|
+
|
|
|
+ s = self.shapes
|
|
|
+ ar = s[:, 1] / s[:, 0]
|
|
|
+ irect = ar.argsort()
|
|
|
+ self.img_files = [self.img_files[i] for i in irect]
|
|
|
+ self.label_files = [self.label_files[i] for i in irect]
|
|
|
+ self.labels = [self.labels[i] for i in irect]
|
|
|
+ self.shapes = s[irect]
|
|
|
+ ar = ar[irect]
|
|
|
+
|
|
|
+
|
|
|
+ shapes = [[1, 1]] * nb
|
|
|
+ for i in range(nb):
|
|
|
+ ari = ar[bi == i]
|
|
|
+ mini, maxi = ari.min(), ari.max()
|
|
|
+ if maxi < 1:
|
|
|
+ shapes[i] = [maxi, 1]
|
|
|
+ elif mini > 1:
|
|
|
+ shapes[i] = [1, 1 / mini]
|
|
|
+
|
|
|
+ self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
|
|
|
+
|
|
|
+
|
|
|
+ self.imgs = [None] * n
|
|
|
+ if cache_images:
|
|
|
+ gb = 0
|
|
|
+ self.img_hw0, self.img_hw = [None] * n, [None] * n
|
|
|
+ results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))
|
|
|
+ pbar = tqdm(enumerate(results), total=n)
|
|
|
+ for i, x in pbar:
|
|
|
+ self.imgs[i], self.img_hw0[i], self.img_hw[i] = x
|
|
|
+ gb += self.imgs[i].nbytes
|
|
|
+ pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)'
|
|
|
+ pbar.close()
|
|
|
+
|
|
|
+ def cache_labels(self, path=Path('./labels.cache'), prefix=''):
|
|
|
+
|
|
|
+ x = {}
|
|
|
+ nm, nf, ne, nc = 0, 0, 0, 0
|
|
|
+ pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files))
|
|
|
+ for i, (im_file, lb_file) in enumerate(pbar):
|
|
|
+ try:
|
|
|
+
|
|
|
+ im = Image.open(im_file)
|
|
|
+ im.verify()
|
|
|
+ shape = exif_size(im)
|
|
|
+ segments = []
|
|
|
+ assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
|
|
|
+ assert im.format.lower() in img_formats, f'invalid image format {im.format}'
|
|
|
+
|
|
|
+
|
|
|
+ if os.path.isfile(lb_file):
|
|
|
+ nf += 1
|
|
|
+ with open(lb_file, 'r') as f:
|
|
|
+ l = [x.split() for x in f.read().strip().splitlines()]
|
|
|
+ if any([len(x) > 8 for x in l]):
|
|
|
+ classes = np.array([x[0] for x in l], dtype=np.float32)
|
|
|
+ segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l]
|
|
|
+ l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)
|
|
|
+ l = np.array(l, dtype=np.float32)
|
|
|
+ if len(l):
|
|
|
+ assert l.shape[1] == 5, 'labels require 5 columns each'
|
|
|
+ assert (l >= 0).all(), 'negative labels'
|
|
|
+ assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels'
|
|
|
+ assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels'
|
|
|
+ else:
|
|
|
+ ne += 1
|
|
|
+ l = np.zeros((0, 5), dtype=np.float32)
|
|
|
+ else:
|
|
|
+ nm += 1
|
|
|
+ l = np.zeros((0, 5), dtype=np.float32)
|
|
|
+ x[im_file] = [l, shape, segments]
|
|
|
+ except Exception as e:
|
|
|
+ nc += 1
|
|
|
+ logging.info(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}')
|
|
|
+
|
|
|
+ pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels... " \
|
|
|
+ f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted"
|
|
|
+ pbar.close()
|
|
|
+
|
|
|
+ if nf == 0:
|
|
|
+ logging.info(f'{prefix}WARNING: No labels found in {path}. See {help_url}')
|
|
|
+
|
|
|
+ x['hash'] = get_hash(self.label_files + self.img_files)
|
|
|
+ x['results'] = nf, nm, ne, nc, i + 1
|
|
|
+ x['version'] = 0.1
|
|
|
+ try:
|
|
|
+ torch.save(x, path)
|
|
|
+ logging.info(f'{prefix}New cache created: {path}')
|
|
|
+ except Exception as e:
|
|
|
+ logging.info(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}')
|
|
|
+ return x
|
|
|
+
|
|
|
+ def __len__(self):
|
|
|
+ return len(self.img_files)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ def __getitem__(self, index):
|
|
|
+ index = self.indices[index]
|
|
|
+
|
|
|
+ hyp = self.hyp
|
|
|
+ mosaic = self.mosaic and random.random() < hyp['mosaic']
|
|
|
+ if mosaic:
|
|
|
+
|
|
|
+ img, labels = load_mosaic(self, index)
|
|
|
+ shapes = None
|
|
|
+
|
|
|
+
|
|
|
+ if random.random() < hyp['mixup']:
|
|
|
+ img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1))
|
|
|
+ r = np.random.beta(8.0, 8.0)
|
|
|
+ img = (img * r + img2 * (1 - r)).astype(np.uint8)
|
|
|
+ labels = np.concatenate((labels, labels2), 0)
|
|
|
+
|
|
|
+ else:
|
|
|
+
|
|
|
+ img, (h0, w0), (h, w) = load_image(self, index)
|
|
|
+
|
|
|
+
|
|
|
+ shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size
|
|
|
+ img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
|
|
+ shapes = (h0, w0), ((h / h0, w / w0), pad)
|
|
|
+
|
|
|
+ labels = self.labels[index].copy()
|
|
|
+ if labels.size:
|
|
|
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
|
|
|
+
|
|
|
+ if self.augment:
|
|
|
+
|
|
|
+ if not mosaic:
|
|
|
+ img, labels = random_perspective(img, labels,
|
|
|
+ degrees=hyp['degrees'],
|
|
|
+ translate=hyp['translate'],
|
|
|
+ scale=hyp['scale'],
|
|
|
+ shear=hyp['shear'],
|
|
|
+ perspective=hyp['perspective'])
|
|
|
+
|
|
|
+
|
|
|
+ augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ nL = len(labels)
|
|
|
+ if nL:
|
|
|
+ labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])
|
|
|
+ labels[:, [2, 4]] /= img.shape[0]
|
|
|
+ labels[:, [1, 3]] /= img.shape[1]
|
|
|
+
|
|
|
+ if self.augment:
|
|
|
+
|
|
|
+ if random.random() < hyp['flipud']:
|
|
|
+ img = np.flipud(img)
|
|
|
+ if nL:
|
|
|
+ labels[:, 2] = 1 - labels[:, 2]
|
|
|
+
|
|
|
+
|
|
|
+ if random.random() < hyp['fliplr']:
|
|
|
+ img = np.fliplr(img)
|
|
|
+ if nL:
|
|
|
+ labels[:, 1] = 1 - labels[:, 1]
|
|
|
+
|
|
|
+ labels_out = torch.zeros((nL, 6))
|
|
|
+ if nL:
|
|
|
+ labels_out[:, 1:] = torch.from_numpy(labels)
|
|
|
+
|
|
|
+
|
|
|
+ img = img[:, :, ::-1].transpose(2, 0, 1)
|
|
|
+ img = np.ascontiguousarray(img)
|
|
|
+
|
|
|
+ return torch.from_numpy(img), labels_out, self.img_files[index], shapes
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def collate_fn(batch):
|
|
|
+ img, label, path, shapes = zip(*batch)
|
|
|
+ for i, l in enumerate(label):
|
|
|
+ l[:, 0] = i
|
|
|
+ return torch.stack(img, 0), torch.cat(label, 0), path, shapes
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def collate_fn4(batch):
|
|
|
+ img, label, path, shapes = zip(*batch)
|
|
|
+ n = len(shapes) // 4
|
|
|
+ img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
|
|
|
+
|
|
|
+ ho = torch.tensor([[0., 0, 0, 1, 0, 0]])
|
|
|
+ wo = torch.tensor([[0., 0, 1, 0, 0, 0]])
|
|
|
+ s = torch.tensor([[1, 1, .5, .5, .5, .5]])
|
|
|
+ for i in range(n):
|
|
|
+ i *= 4
|
|
|
+ if random.random() < 0.5:
|
|
|
+ im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[
|
|
|
+ 0].type(img[i].type())
|
|
|
+ l = label[i]
|
|
|
+ else:
|
|
|
+ im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
|
|
|
+ l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
|
|
|
+ img4.append(im)
|
|
|
+ label4.append(l)
|
|
|
+
|
|
|
+ for i, l in enumerate(label4):
|
|
|
+ l[:, 0] = i
|
|
|
+
|
|
|
+ return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+def load_image(self, index):
|
|
|
+
|
|
|
+ img = self.imgs[index]
|
|
|
+ if img is None:
|
|
|
+ path = self.img_files[index]
|
|
|
+ img = cv2.imread(path)
|
|
|
+ assert img is not None, 'Image Not Found ' + path
|
|
|
+ h0, w0 = img.shape[:2]
|
|
|
+ r = self.img_size / max(h0, w0)
|
|
|
+ if r != 1:
|
|
|
+ img = cv2.resize(img, (int(w0 * r), int(h0 * r)),
|
|
|
+ interpolation=cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR)
|
|
|
+ return img, (h0, w0), img.shape[:2]
|
|
|
+ else:
|
|
|
+ return self.imgs[index], self.img_hw0[index], self.img_hw[index]
|
|
|
+
|
|
|
+
|
|
|
+def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5):
|
|
|
+ r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1
|
|
|
+ hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
|
|
|
+ dtype = img.dtype
|
|
|
+
|
|
|
+ x = np.arange(0, 256, dtype=np.int16)
|
|
|
+ lut_hue = ((x * r[0]) % 180).astype(dtype)
|
|
|
+ lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
|
|
+ lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
|
|
+
|
|
|
+ img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
|
|
|
+ cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)
|
|
|
+
|
|
|
+
|
|
|
+def hist_equalize(img, clahe=True, bgr=False):
|
|
|
+
|
|
|
+ yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
|
|
|
+ if clahe:
|
|
|
+ c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
|
|
+ yuv[:, :, 0] = c.apply(yuv[:, :, 0])
|
|
|
+ else:
|
|
|
+ yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0])
|
|
|
+ return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB)
|
|
|
+
|
|
|
+
|
|
|
+def load_mosaic(self, index):
|
|
|
+
|
|
|
+
|
|
|
+ labels4, segments4 = [], []
|
|
|
+ s = self.img_size
|
|
|
+ yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border]
|
|
|
+ indices = [index] + random.choices(self.indices, k=3)
|
|
|
+ for i, index in enumerate(indices):
|
|
|
+
|
|
|
+ img, _, (h, w) = load_image(self, index)
|
|
|
+
|
|
|
+
|
|
|
+ if i == 0:
|
|
|
+ img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)
|
|
|
+ x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc
|
|
|
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h
|
|
|
+ elif i == 1:
|
|
|
+ x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
|
|
+ x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
|
|
+ elif i == 2:
|
|
|
+ x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
|
|
+ x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
|
|
+ elif i == 3:
|
|
|
+ x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
|
|
+ x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
|
|
+
|
|
|
+ img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]
|
|
|
+ padw = x1a - x1b
|
|
|
+ padh = y1a - y1b
|
|
|
+
|
|
|
+
|
|
|
+ labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
|
|
+ if labels.size:
|
|
|
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)
|
|
|
+ segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
|
|
|
+ labels4.append(labels)
|
|
|
+ segments4.extend(segments)
|
|
|
+
|
|
|
+
|
|
|
+ labels4 = np.concatenate(labels4, 0)
|
|
|
+ for x in (labels4[:, 1:], *segments4):
|
|
|
+ np.clip(x, 0, 2 * s, out=x)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ img4, labels4 = random_perspective(img4, labels4, segments4,
|
|
|
+ degrees=self.hyp['degrees'],
|
|
|
+ translate=self.hyp['translate'],
|
|
|
+ scale=self.hyp['scale'],
|
|
|
+ shear=self.hyp['shear'],
|
|
|
+ perspective=self.hyp['perspective'],
|
|
|
+ border=self.mosaic_border)
|
|
|
+
|
|
|
+ return img4, labels4
|
|
|
+
|
|
|
+
|
|
|
+def load_mosaic9(self, index):
|
|
|
+
|
|
|
+
|
|
|
+ labels9, segments9 = [], []
|
|
|
+ s = self.img_size
|
|
|
+ indices = [index] + random.choices(self.indices, k=8)
|
|
|
+ for i, index in enumerate(indices):
|
|
|
+
|
|
|
+ img, _, (h, w) = load_image(self, index)
|
|
|
+
|
|
|
+
|
|
|
+ if i == 0:
|
|
|
+ img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)
|
|
|
+ h0, w0 = h, w
|
|
|
+ c = s, s, s + w, s + h
|
|
|
+ elif i == 1:
|
|
|
+ c = s, s - h, s + w, s
|
|
|
+ elif i == 2:
|
|
|
+ c = s + wp, s - h, s + wp + w, s
|
|
|
+ elif i == 3:
|
|
|
+ c = s + w0, s, s + w0 + w, s + h
|
|
|
+ elif i == 4:
|
|
|
+ c = s + w0, s + hp, s + w0 + w, s + hp + h
|
|
|
+ elif i == 5:
|
|
|
+ c = s + w0 - w, s + h0, s + w0, s + h0 + h
|
|
|
+ elif i == 6:
|
|
|
+ c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
|
|
|
+ elif i == 7:
|
|
|
+ c = s - w, s + h0 - h, s, s + h0
|
|
|
+ elif i == 8:
|
|
|
+ c = s - w, s + h0 - hp - h, s, s + h0 - hp
|
|
|
+
|
|
|
+ padx, pady = c[:2]
|
|
|
+ x1, y1, x2, y2 = [max(x, 0) for x in c]
|
|
|
+
|
|
|
+
|
|
|
+ labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
|
|
+ if labels.size:
|
|
|
+ labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady)
|
|
|
+ segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
|
|
|
+ labels9.append(labels)
|
|
|
+ segments9.extend(segments)
|
|
|
+
|
|
|
+
|
|
|
+ img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:]
|
|
|
+ hp, wp = h, w
|
|
|
+
|
|
|
+
|
|
|
+ yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border]
|
|
|
+ img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
|
|
|
+
|
|
|
+
|
|
|
+ labels9 = np.concatenate(labels9, 0)
|
|
|
+ labels9[:, [1, 3]] -= xc
|
|
|
+ labels9[:, [2, 4]] -= yc
|
|
|
+ c = np.array([xc, yc])
|
|
|
+ segments9 = [x - c for x in segments9]
|
|
|
+
|
|
|
+ for x in (labels9[:, 1:], *segments9):
|
|
|
+ np.clip(x, 0, 2 * s, out=x)
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ img9, labels9 = random_perspective(img9, labels9, segments9,
|
|
|
+ degrees=self.hyp['degrees'],
|
|
|
+ translate=self.hyp['translate'],
|
|
|
+ scale=self.hyp['scale'],
|
|
|
+ shear=self.hyp['shear'],
|
|
|
+ perspective=self.hyp['perspective'],
|
|
|
+ border=self.mosaic_border)
|
|
|
+
|
|
|
+ return img9, labels9
|
|
|
+
|
|
|
+
|
|
|
+def replicate(img, labels):
|
|
|
+
|
|
|
+ h, w = img.shape[:2]
|
|
|
+ boxes = labels[:, 1:].astype(int)
|
|
|
+ x1, y1, x2, y2 = boxes.T
|
|
|
+ s = ((x2 - x1) + (y2 - y1)) / 2
|
|
|
+ for i in s.argsort()[:round(s.size * 0.5)]:
|
|
|
+ x1b, y1b, x2b, y2b = boxes[i]
|
|
|
+ bh, bw = y2b - y1b, x2b - x1b
|
|
|
+ yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw))
|
|
|
+ x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
|
|
+ img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]
|
|
|
+ labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
|
|
+
|
|
|
+ return img, labels
|
|
|
+
|
|
|
+
|
|
|
+def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
|
|
+
|
|
|
+ shape = img.shape[:2]
|
|
|
+ if isinstance(new_shape, int):
|
|
|
+ new_shape = (new_shape, new_shape)
|
|
|
+
|
|
|
+
|
|
|
+ r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
|
|
+ if not scaleup:
|
|
|
+ r = min(r, 1.0)
|
|
|
+
|
|
|
+
|
|
|
+ ratio = r, r
|
|
|
+ new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
|
|
+ dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]
|
|
|
+ if auto:
|
|
|
+ dw, dh = np.mod(dw, stride), np.mod(dh, stride)
|
|
|
+ elif scaleFill:
|
|
|
+ dw, dh = 0.0, 0.0
|
|
|
+ new_unpad = (new_shape[1], new_shape[0])
|
|
|
+ ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]
|
|
|
+
|
|
|
+ dw /= 2
|
|
|
+ dh /= 2
|
|
|
+
|
|
|
+ if shape[::-1] != new_unpad:
|
|
|
+ img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
|
|
+ top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
|
|
+ left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
|
|
+ img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
|
|
|
+ return img, ratio, (dw, dh)
|
|
|
+
|
|
|
+
|
|
|
+def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
|
|
|
+ border=(0, 0)):
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ height = img.shape[0] + border[0] * 2
|
|
|
+ width = img.shape[1] + border[1] * 2
|
|
|
+
|
|
|
+
|
|
|
+ C = np.eye(3)
|
|
|
+ C[0, 2] = -img.shape[1] / 2
|
|
|
+ C[1, 2] = -img.shape[0] / 2
|
|
|
+
|
|
|
+
|
|
|
+ P = np.eye(3)
|
|
|
+ P[2, 0] = random.uniform(-perspective, perspective)
|
|
|
+ P[2, 1] = random.uniform(-perspective, perspective)
|
|
|
+
|
|
|
+
|
|
|
+ R = np.eye(3)
|
|
|
+ a = random.uniform(-degrees, degrees)
|
|
|
+
|
|
|
+ s = random.uniform(1 - scale, 1 + scale)
|
|
|
+
|
|
|
+ R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
|
|
+
|
|
|
+
|
|
|
+ S = np.eye(3)
|
|
|
+ S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)
|
|
|
+ S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)
|
|
|
+
|
|
|
+
|
|
|
+ T = np.eye(3)
|
|
|
+ T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width
|
|
|
+ T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height
|
|
|
+
|
|
|
+
|
|
|
+ M = T @ S @ R @ P @ C
|
|
|
+ if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():
|
|
|
+ if perspective:
|
|
|
+ img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114))
|
|
|
+ else:
|
|
|
+ img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ n = len(targets)
|
|
|
+ if n:
|
|
|
+ use_segments = any(x.any() for x in segments)
|
|
|
+ new = np.zeros((n, 4))
|
|
|
+ if use_segments:
|
|
|
+ segments = resample_segments(segments)
|
|
|
+ for i, segment in enumerate(segments):
|
|
|
+ xy = np.ones((len(segment), 3))
|
|
|
+ xy[:, :2] = segment
|
|
|
+ xy = xy @ M.T
|
|
|
+ xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]
|
|
|
+
|
|
|
+
|
|
|
+ new[i] = segment2box(xy, width, height)
|
|
|
+
|
|
|
+ else:
|
|
|
+ xy = np.ones((n * 4, 3))
|
|
|
+ xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2)
|
|
|
+ xy = xy @ M.T
|
|
|
+ xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8)
|
|
|
+
|
|
|
+
|
|
|
+ x = xy[:, [0, 2, 4, 6]]
|
|
|
+ y = xy[:, [1, 3, 5, 7]]
|
|
|
+ new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
|
|
+
|
|
|
+
|
|
|
+ new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
|
|
|
+ new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
|
|
|
+
|
|
|
+
|
|
|
+ i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
|
|
|
+ targets = targets[i]
|
|
|
+ targets[:, 1:5] = new[i]
|
|
|
+
|
|
|
+ return img, targets
|
|
|
+
|
|
|
+
|
|
|
+def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16):
|
|
|
+
|
|
|
+ w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
|
|
+ w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
|
|
+ ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))
|
|
|
+ return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)
|
|
|
+
|
|
|
+
|
|
|
+def cutout(image, labels):
|
|
|
+
|
|
|
+ h, w = image.shape[:2]
|
|
|
+
|
|
|
+ def bbox_ioa(box1, box2):
|
|
|
+
|
|
|
+ box2 = box2.transpose()
|
|
|
+
|
|
|
+
|
|
|
+ b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
|
|
|
+ b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
|
|
|
+
|
|
|
+
|
|
|
+ inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
|
|
|
+ (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
|
|
|
+
|
|
|
+
|
|
|
+ box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16
|
|
|
+
|
|
|
+
|
|
|
+ return inter_area / box2_area
|
|
|
+
|
|
|
+
|
|
|
+ scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16
|
|
|
+ for s in scales:
|
|
|
+ mask_h = random.randint(1, int(h * s))
|
|
|
+ mask_w = random.randint(1, int(w * s))
|
|
|
+
|
|
|
+
|
|
|
+ xmin = max(0, random.randint(0, w) - mask_w // 2)
|
|
|
+ ymin = max(0, random.randint(0, h) - mask_h // 2)
|
|
|
+ xmax = min(w, xmin + mask_w)
|
|
|
+ ymax = min(h, ymin + mask_h)
|
|
|
+
|
|
|
+
|
|
|
+ image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
|
|
+
|
|
|
+
|
|
|
+ if len(labels) and s > 0.03:
|
|
|
+ box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
|
|
|
+ ioa = bbox_ioa(box, labels[:, 1:5])
|
|
|
+ labels = labels[ioa < 0.60]
|
|
|
+
|
|
|
+ return labels
|
|
|
+
|
|
|
+
|
|
|
+def create_folder(path='./new'):
|
|
|
+
|
|
|
+ if os.path.exists(path):
|
|
|
+ shutil.rmtree(path)
|
|
|
+ os.makedirs(path)
|
|
|
+
|
|
|
+
|
|
|
+def flatten_recursive(path='../coco128'):
|
|
|
+
|
|
|
+ new_path = Path(path + '_flat')
|
|
|
+ create_folder(new_path)
|
|
|
+ for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
|
|
|
+ shutil.copyfile(file, new_path / Path(file).name)
|
|
|
+
|
|
|
+
|
|
|
+def extract_boxes(path='../coco128/'):
|
|
|
+
|
|
|
+
|
|
|
+ path = Path(path)
|
|
|
+ shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None
|
|
|
+ files = list(path.rglob('*.*'))
|
|
|
+ n = len(files)
|
|
|
+ for im_file in tqdm(files, total=n):
|
|
|
+ if im_file.suffix[1:] in img_formats:
|
|
|
+
|
|
|
+ im = cv2.imread(str(im_file))[..., ::-1]
|
|
|
+ h, w = im.shape[:2]
|
|
|
+
|
|
|
+
|
|
|
+ lb_file = Path(img2label_paths([str(im_file)])[0])
|
|
|
+ if Path(lb_file).exists():
|
|
|
+ with open(lb_file, 'r') as f:
|
|
|
+ lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32)
|
|
|
+
|
|
|
+ for j, x in enumerate(lb):
|
|
|
+ c = int(x[0])
|
|
|
+ f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg'
|
|
|
+ if not f.parent.is_dir():
|
|
|
+ f.parent.mkdir(parents=True)
|
|
|
+
|
|
|
+ b = x[1:] * [w, h, w, h]
|
|
|
+
|
|
|
+ b[2:] = b[2:] * 1.2 + 3
|
|
|
+ b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
|
|
|
+
|
|
|
+ b[[0, 2]] = np.clip(b[[0, 2]], 0, w)
|
|
|
+ b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
|
|
+ assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
|
|
|
+
|
|
|
+
|
|
|
+def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0), annotated_only=False):
|
|
|
+ """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
|
|
|
+ Usage: from utils.datasets import *; autosplit('../coco128')
|
|
|
+ Arguments
|
|
|
+ path: Path to images directory
|
|
|
+ weights: Train, val, test weights (list)
|
|
|
+ annotated_only: Only use images with an annotated txt file
|
|
|
+ """
|
|
|
+ path = Path(path)
|
|
|
+ files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], [])
|
|
|
+ n = len(files)
|
|
|
+ indices = random.choices([0, 1, 2], weights=weights, k=n)
|
|
|
+
|
|
|
+ txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt']
|
|
|
+ [(path / x).unlink() for x in txt if (path / x).exists()]
|
|
|
+
|
|
|
+ print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
|
|
|
+ for i, img in tqdm(zip(indices, files), total=n):
|
|
|
+ if not annotated_only or Path(img2label_paths([str(img)])[0]).exists():
|
|
|
+ with open(path / txt[i], 'a') as f:
|
|
|
+ f.write(str(img) + '\n')
|