| 
					
				 | 
			
			
				@@ -0,0 +1,1067 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# Dataset utils and dataloaders 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import glob 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import logging 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import math 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import os 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import random 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import shutil 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import time 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from itertools import repeat 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from multiprocessing.pool import ThreadPool 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from pathlib import Path 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from threading import Thread 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import cv2 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import numpy as np 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import torch 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import torch.nn.functional as F 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from PIL import Image, ExifTags 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from torch.utils.data import Dataset 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from tqdm import tqdm 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from utils.general import check_requirements, xyxy2xywh, xywh2xyxy, xywhn2xyxy, xyn2xy, segment2box, segments2boxes, \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    resample_segments, clean_str 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from utils.torch_utils import torch_distributed_zero_first 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# Parameters 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo']  # acceptable image suffixes 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv']  # acceptable video suffixes 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+logger = logging.getLogger(__name__) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# Get orientation exif tag 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+for orientation in ExifTags.TAGS.keys(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    if ExifTags.TAGS[orientation] == 'Orientation': 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        break 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def get_hash(files): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Returns a single hash value of a list of files 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return sum(os.path.getsize(f) for f in files if os.path.isfile(f)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def exif_size(img): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Returns exif-corrected PIL size 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    s = img.size  # (width, height) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    try: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        rotation = dict(img._getexif().items())[orientation] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if rotation == 6:  # rotation 270 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            s = (s[1], s[0]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        elif rotation == 8:  # rotation 90 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            s = (s[1], s[0]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    except: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        pass 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return s 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def create_dataloader(path, imgsz, batch_size, stride, opt, hyp=None, augment=False, cache=False, pad=0.0, rect=False, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                      rank=-1, world_size=1, workers=8, image_weights=False, quad=False, prefix=''): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Make sure only the first process in DDP process the dataset first, and the following others can use the cache 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    with torch_distributed_zero_first(rank): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        dataset = LoadImagesAndLabels(path, imgsz, batch_size, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                      augment=augment,  # augment images 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                      hyp=hyp,  # augmentation hyperparameters 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                      rect=rect,  # rectangular training 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                      cache_images=cache, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                      single_cls=opt.single_cls, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                      stride=int(stride), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                      pad=pad, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                      image_weights=image_weights, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                      prefix=prefix) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    batch_size = min(batch_size, len(dataset)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    nw = min([os.cpu_count() // world_size, batch_size if batch_size > 1 else 0, workers])  # number of workers 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    sampler = torch.utils.data.distributed.DistributedSampler(dataset) if rank != -1 else None 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    loader = torch.utils.data.DataLoader if image_weights else InfiniteDataLoader 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Use torch.utils.data.DataLoader() if dataset.properties will update during training else InfiniteDataLoader() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    dataloader = loader(dataset, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        batch_size=batch_size, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        num_workers=nw, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        sampler=sampler, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        pin_memory=True, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return dataloader, dataset 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+class InfiniteDataLoader(torch.utils.data.dataloader.DataLoader): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    """ Dataloader that reuses workers 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    Uses same syntax as vanilla DataLoader 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __init__(self, *args, **kwargs): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        super().__init__(*args, **kwargs) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.iterator = super().__iter__() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __len__(self): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return len(self.batch_sampler.sampler) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __iter__(self): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for i in range(len(self)): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            yield next(self.iterator) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+class _RepeatSampler(object): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    """ Sampler that repeats forever 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    Args: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        sampler (Sampler) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __init__(self, sampler): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.sampler = sampler 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __iter__(self): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        while True: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            yield from iter(self.sampler) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+class LoadImages:  # for inference 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __init__(self, path, img_size=640, stride=32): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        p = str(Path(path).absolute())  # os-agnostic absolute path 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if '*' in p: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            files = sorted(glob.glob(p, recursive=True))  # glob 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        elif os.path.isdir(p): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            files = sorted(glob.glob(os.path.join(p, '*.*')))  # dir 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        elif os.path.isfile(p): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            files = [p]  # files 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            raise Exception(f'ERROR: {p} does not exist') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        images = [x for x in files if x.split('.')[-1].lower() in img_formats] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        videos = [x for x in files if x.split('.')[-1].lower() in vid_formats] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        ni, nv = len(images), len(videos) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.img_size = img_size 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.stride = stride 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.files = images + videos 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.nf = ni + nv  # number of files 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.video_flag = [False] * ni + [True] * nv 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.mode = 'image' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if any(videos): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.new_video(videos[0])  # new video 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.cap = None 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        assert self.nf > 0, f'No images or videos found in {p}. ' \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __iter__(self): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.count = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return self 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __next__(self): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if self.count == self.nf: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            raise StopIteration 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        path = self.files[self.count] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if self.video_flag[self.count]: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # Read video 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.mode = 'video' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            ret_val, img0 = self.cap.read() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if not ret_val: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                self.count += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                self.cap.release() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if self.count == self.nf:  # last video 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    raise StopIteration 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    path = self.files[self.count] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    self.new_video(path) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    ret_val, img0 = self.cap.read() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.frame += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            print(f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ', end='') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # Read image 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.count += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            img0 = cv2.imread(path)  # BGR 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            assert img0 is not None, 'Image Not Found ' + path 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            print(f'image {self.count}/{self.nf} {path}: ', end='') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Padded resize 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img = letterbox(img0, self.img_size, stride=self.stride)[0] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Convert 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img = np.ascontiguousarray(img) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return path, img, img0, self.cap 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def new_video(self, path): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.frame = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.cap = cv2.VideoCapture(path) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __len__(self): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return self.nf  # number of files 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+class LoadWebcam:  # for inference 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __init__(self, pipe='0', img_size=640, stride=32): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.img_size = img_size 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.stride = stride 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if pipe.isnumeric(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            pipe = eval(pipe)  # local camera 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # pipe = 'rtsp://192.168.1.64/1'  # IP camera 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # pipe = 'rtsp://username:password@192.168.1.64/1'  # IP camera with login 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # pipe = 'http://wmccpinetop.axiscam.net/mjpg/video.mjpg'  # IP golf camera 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.pipe = pipe 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.cap = cv2.VideoCapture(pipe)  # video capture object 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3)  # set buffer size 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __iter__(self): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.count = -1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return self 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __next__(self): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.count += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if cv2.waitKey(1) == ord('q'):  # q to quit 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.cap.release() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            cv2.destroyAllWindows() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            raise StopIteration 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Read frame 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if self.pipe == 0:  # local camera 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            ret_val, img0 = self.cap.read() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            img0 = cv2.flip(img0, 1)  # flip left-right 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        else:  # IP camera 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            n = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            while True: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                n += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                self.cap.grab() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if n % 30 == 0:  # skip frames 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    ret_val, img0 = self.cap.retrieve() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    if ret_val: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        break 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Print 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        assert ret_val, f'Camera Error {self.pipe}' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img_path = 'webcam.jpg' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        print(f'webcam {self.count}: ', end='') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Padded resize 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img = letterbox(img0, self.img_size, stride=self.stride)[0] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Convert 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img = np.ascontiguousarray(img) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return img_path, img, img0, None 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __len__(self): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+class LoadStreams:  # multiple IP or RTSP cameras 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __init__(self, sources='streams.txt', img_size=640, stride=32): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.mode = 'stream' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.img_size = img_size 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.stride = stride 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if os.path.isfile(sources): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            with open(sources, 'r') as f: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            sources = [sources] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        n = len(sources) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.sources = [clean_str(x) for x in sources]  # clean source names for later 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for i, s in enumerate(sources):  # index, source 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # Start thread to read frames from video stream 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            print(f'{i + 1}/{n}: {s}... ', end='') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if 'youtube.com/' in s or 'youtu.be/' in s:  # if source is YouTube video 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                check_requirements(('pafy', 'youtube_dl')) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                import pafy 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                s = pafy.new(s).getbest(preftype="mp4").url  # YouTube URL 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            cap = cv2.VideoCapture(s) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            assert cap.isOpened(), f'Failed to open {s}' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.fps[i] = max(cap.get(cv2.CAP_PROP_FPS) % 100, 0) or 30.0  # 30 FPS fallback 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf')  # infinite stream fallback 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            _, self.imgs[i] = cap.read()  # guarantee first frame 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.threads[i] = Thread(target=self.update, args=([i, cap]), daemon=True) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            print(f" success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.threads[i].start() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        print('')  # newline 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # check for common shapes 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        s = np.stack([letterbox(x, self.img_size, stride=self.stride)[0].shape for x in self.imgs], 0)  # shapes 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.rect = np.unique(s, axis=0).shape[0] == 1  # rect inference if all shapes equal 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if not self.rect: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            print('WARNING: Different stream shapes detected. For optimal performance supply similarly-shaped streams.') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def update(self, i, cap): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Read stream `i` frames in daemon thread 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        n, f = 0, self.frames[i] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        while cap.isOpened() and n < f: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            n += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # _, self.imgs[index] = cap.read() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            cap.grab() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if n % 4:  # read every 4th frame 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                success, im = cap.retrieve() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                self.imgs[i] = im if success else self.imgs[i] * 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            time.sleep(1 / self.fps[i])  # wait time 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __iter__(self): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.count = -1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return self 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __next__(self): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.count += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'):  # q to quit 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            cv2.destroyAllWindows() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            raise StopIteration 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Letterbox 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img0 = self.imgs.copy() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img = [letterbox(x, self.img_size, auto=self.rect, stride=self.stride)[0] for x in img0] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Stack 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img = np.stack(img, 0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Convert 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img = img[:, :, :, ::-1].transpose(0, 3, 1, 2)  # BGR to RGB, to bsx3x416x416 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img = np.ascontiguousarray(img) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return self.sources, img, img0, None 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __len__(self): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return 0  # 1E12 frames = 32 streams at 30 FPS for 30 years 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def img2label_paths(img_paths): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Define label paths as a function of image paths 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep  # /images/, /labels/ substrings 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return ['txt'.join(x.replace(sa, sb, 1).rsplit(x.split('.')[-1], 1)) for x in img_paths] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+class LoadImagesAndLabels(Dataset):  # for training/testing 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                 cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.img_size = img_size 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.augment = augment 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.hyp = hyp 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.image_weights = image_weights 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.rect = False if image_weights else rect 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.mosaic_border = [-img_size // 2, -img_size // 2] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.stride = stride 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.path = path 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        try: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            f = []  # image files 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for p in path if isinstance(path, list) else [path]: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                p = Path(p)  # os-agnostic 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if p.is_dir():  # dir 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    f += glob.glob(str(p / '**' / '*.*'), recursive=True) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    # f = list(p.rglob('**/*.*'))  # pathlib 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                elif p.is_file():  # file 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    with open(p, 'r') as t: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        t = t.read().strip().splitlines() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        parent = str(p.parent) + os.sep 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        f += [x.replace('./', parent) if x.startswith('./') else x for x in t]  # local to global path 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        # f += [p.parent / x.lstrip(os.sep) for x in t]  # local to global path (pathlib) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    raise Exception(f'{prefix}{p} does not exist') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats])  # pathlib 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            assert self.img_files, f'{prefix}No images found' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        except Exception as e: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Check cache 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.label_files = img2label_paths(self.img_files)  # labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')  # cached labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if cache_path.is_file(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            cache, exists = torch.load(cache_path), True  # load 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if cache['hash'] != get_hash(self.label_files + self.img_files) or 'version' not in cache:  # changed 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                cache, exists = self.cache_labels(cache_path, prefix), False  # re-cache 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            cache, exists = self.cache_labels(cache_path, prefix), False  # cache 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Display cache 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        nf, nm, ne, nc, n = cache.pop('results')  # found, missing, empty, corrupted, total 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if exists: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupted" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            tqdm(None, desc=prefix + d, total=n, initial=n)  # display cache results 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Read cache 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        cache.pop('hash')  # remove hash 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        cache.pop('version')  # remove version 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        labels, shapes, self.segments = zip(*cache.values()) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.labels = list(labels) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.shapes = np.array(shapes, dtype=np.float64) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.img_files = list(cache.keys())  # update 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.label_files = img2label_paths(cache.keys())  # update 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if single_cls: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for x in self.labels: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                x[:, 0] = 0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        n = len(shapes)  # number of images 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        bi = np.floor(np.arange(n) / batch_size).astype(np.int)  # batch index 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        nb = bi[-1] + 1  # number of batches 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.batch = bi  # batch index of image 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.n = n 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.indices = range(n) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Rectangular Training 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if self.rect: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # Sort by aspect ratio 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            s = self.shapes  # wh 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            ar = s[:, 1] / s[:, 0]  # aspect ratio 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            irect = ar.argsort() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.img_files = [self.img_files[i] for i in irect] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.label_files = [self.label_files[i] for i in irect] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.labels = [self.labels[i] for i in irect] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.shapes = s[irect]  # wh 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            ar = ar[irect] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # Set training image shapes 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            shapes = [[1, 1]] * nb 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for i in range(nb): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                ari = ar[bi == i] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                mini, maxi = ari.min(), ari.max() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if maxi < 1: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    shapes[i] = [maxi, 1] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                elif mini > 1: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    shapes[i] = [1, 1 / mini] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Cache images into memory for faster training (WARNING: large datasets may exceed system RAM) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.imgs = [None] * n 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if cache_images: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            gb = 0  # Gigabytes of cached images 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            self.img_hw0, self.img_hw = [None] * n, [None] * n 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            results = ThreadPool(8).imap(lambda x: load_image(*x), zip(repeat(self), range(n)))  # 8 threads 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            pbar = tqdm(enumerate(results), total=n) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for i, x in pbar: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                self.imgs[i], self.img_hw0[i], self.img_hw[i] = x  # img, hw_original, hw_resized = load_image(self, i) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                gb += self.imgs[i].nbytes 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB)' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            pbar.close() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def cache_labels(self, path=Path('./labels.cache'), prefix=''): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Cache dataset labels, check images and read shapes 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        x = {}  # dict 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        nm, nf, ne, nc = 0, 0, 0, 0  # number missing, found, empty, duplicate 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        pbar = tqdm(zip(self.img_files, self.label_files), desc='Scanning images', total=len(self.img_files)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for i, (im_file, lb_file) in enumerate(pbar): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            try: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                # verify images 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                im = Image.open(im_file) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                im.verify()  # PIL verify 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                shape = exif_size(im)  # image size 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                segments = []  # instance segments 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                assert im.format.lower() in img_formats, f'invalid image format {im.format}' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                # verify labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if os.path.isfile(lb_file): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    nf += 1  # label found 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    with open(lb_file, 'r') as f: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        l = [x.split() for x in f.read().strip().splitlines()] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        if any([len(x) > 8 for x in l]):  # is segment 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            classes = np.array([x[0] for x in l], dtype=np.float32) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in l]  # (cls, xy1...) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                            l = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)  # (cls, xywh) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        l = np.array(l, dtype=np.float32) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    if len(l): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        assert l.shape[1] == 5, 'labels require 5 columns each' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        assert (l >= 0).all(), 'negative labels' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        assert (l[:, 1:] <= 1).all(), 'non-normalized or out of bounds coordinate labels' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        assert np.unique(l, axis=0).shape[0] == l.shape[0], 'duplicate labels' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        ne += 1  # label empty 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        l = np.zeros((0, 5), dtype=np.float32) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    nm += 1  # label missing 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    l = np.zeros((0, 5), dtype=np.float32) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                x[im_file] = [l, shape, segments] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            except Exception as e: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                nc += 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                logging.info(f'{prefix}WARNING: Ignoring corrupted image and/or label {im_file}: {e}') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            pbar.desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels... " \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        f"{nf} found, {nm} missing, {ne} empty, {nc} corrupted" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        pbar.close() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if nf == 0: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            logging.info(f'{prefix}WARNING: No labels found in {path}. See {help_url}') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        x['hash'] = get_hash(self.label_files + self.img_files) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        x['results'] = nf, nm, ne, nc, i + 1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        x['version'] = 0.1  # cache version 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        try: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            torch.save(x, path)  # save for next time 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            logging.info(f'{prefix}New cache created: {path}') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        except Exception as e: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            logging.info(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}')  # path not writeable 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return x 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __len__(self): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return len(self.img_files) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # def __iter__(self): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #     self.count = -1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #     print('ran dataset iter') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #     #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    #     return self 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def __getitem__(self, index): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        index = self.indices[index]  # linear, shuffled, or image_weights 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        hyp = self.hyp 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        mosaic = self.mosaic and random.random() < hyp['mosaic'] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if mosaic: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # Load mosaic 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            img, labels = load_mosaic(self, index) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            shapes = None 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # MixUp https://arxiv.org/pdf/1710.09412.pdf 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if random.random() < hyp['mixup']: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                r = np.random.beta(8.0, 8.0)  # mixup ratio, alpha=beta=8.0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                img = (img * r + img2 * (1 - r)).astype(np.uint8) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                labels = np.concatenate((labels, labels2), 0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # Load image 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            img, (h0, w0), (h, w) = load_image(self, index) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # Letterbox 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            labels = self.labels[index].copy() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if labels.size:  # normalized xywh to pixel xyxy format 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if self.augment: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # Augment imagespace 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if not mosaic: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                img, labels = random_perspective(img, labels, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                                 degrees=hyp['degrees'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                                 translate=hyp['translate'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                                 scale=hyp['scale'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                                 shear=hyp['shear'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                                 perspective=hyp['perspective']) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # Augment colorspace 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # Apply cutouts 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # if random.random() < 0.9: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            #     labels = cutout(img, labels) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        nL = len(labels)  # number of labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if nL: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])  # convert xyxy to xywh 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            labels[:, [2, 4]] /= img.shape[0]  # normalized height 0-1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            labels[:, [1, 3]] /= img.shape[1]  # normalized width 0-1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if self.augment: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # flip up-down 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if random.random() < hyp['flipud']: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                img = np.flipud(img) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if nL: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    labels[:, 2] = 1 - labels[:, 2] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # flip left-right 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if random.random() < hyp['fliplr']: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                img = np.fliplr(img) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if nL: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    labels[:, 1] = 1 - labels[:, 1] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        labels_out = torch.zeros((nL, 6)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if nL: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            labels_out[:, 1:] = torch.from_numpy(labels) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Convert 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img = np.ascontiguousarray(img) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return torch.from_numpy(img), labels_out, self.img_files[index], shapes 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    @staticmethod 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def collate_fn(batch): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img, label, path, shapes = zip(*batch)  # transposed 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for i, l in enumerate(label): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            l[:, 0] = i  # add target image index for build_targets() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return torch.stack(img, 0), torch.cat(label, 0), path, shapes 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    @staticmethod 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def collate_fn4(batch): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img, label, path, shapes = zip(*batch)  # transposed 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        n = len(shapes) // 4 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        ho = torch.tensor([[0., 0, 0, 1, 0, 0]]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        wo = torch.tensor([[0., 0, 1, 0, 0, 0]]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        s = torch.tensor([[1, 1, .5, .5, .5, .5]])  # scale 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for i in range(n):  # zidane torch.zeros(16,3,720,1280)  # BCHW 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            i *= 4 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if random.random() < 0.5: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2., mode='bilinear', align_corners=False)[ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    0].type(img[i].type()) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                l = label[i] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                l = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            img4.append(im) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            label4.append(l) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for i, l in enumerate(label4): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            l[:, 0] = i  # add target image index for build_targets() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+# Ancillary functions -------------------------------------------------------------------------------------------------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def load_image(self, index): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # loads 1 image from dataset, returns img, original hw, resized hw 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    img = self.imgs[index] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    if img is None:  # not cached 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        path = self.img_files[index] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img = cv2.imread(path)  # BGR 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        assert img is not None, 'Image Not Found ' + path 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        h0, w0 = img.shape[:2]  # orig hw 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        r = self.img_size / max(h0, w0)  # ratio 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if r != 1:  # if sizes are not equal 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            img = cv2.resize(img, (int(w0 * r), int(h0 * r)), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                             interpolation=cv2.INTER_AREA if r < 1 and not self.augment else cv2.INTER_LINEAR) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return img, (h0, w0), img.shape[:2]  # img, hw_original, hw_resized 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return self.imgs[index], self.img_hw0[index], self.img_hw[index]  # img, hw_original, hw_resized 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def augment_hsv(img, hgain=0.5, sgain=0.5, vgain=0.5): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1  # random gains 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    dtype = img.dtype  # uint8 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    x = np.arange(0, 256, dtype=np.int16) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    lut_hue = ((x * r[0]) % 180).astype(dtype) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    lut_val = np.clip(x * r[2], 0, 255).astype(dtype) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img)  # no return needed 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def hist_equalize(img, clahe=True, bgr=False): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Equalize histogram on BGR image 'img' with img.shape(n,m,3) and range 0-255 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    yuv = cv2.cvtColor(img, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    if clahe: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        yuv[:, :, 0] = c.apply(yuv[:, :, 0]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    else: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0])  # equalize Y channel histogram 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB)  # convert YUV image to RGB 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def load_mosaic(self, index): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # loads images in a 4-mosaic 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    labels4, segments4 = [], [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    s = self.img_size 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    yc, xc = [int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border]  # mosaic center x, y 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for i, index in enumerate(indices): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Load image 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img, _, (h, w) = load_image(self, index) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # place img in img4 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if i == 0:  # top left 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        elif i == 1:  # top right 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        elif i == 2:  # bottom left 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        elif i == 3:  # bottom right 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        padw = x1a - x1b 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        padh = y1a - y1b 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        labels, segments = self.labels[index].copy(), self.segments[index].copy() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if labels.size: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            segments = [xyn2xy(x, w, h, padw, padh) for x in segments] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        labels4.append(labels) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        segments4.extend(segments) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Concat/clip labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    labels4 = np.concatenate(labels4, 0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for x in (labels4[:, 1:], *segments4): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # img4, labels4 = replicate(img4, labels4)  # replicate 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Augment 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    img4, labels4 = random_perspective(img4, labels4, segments4, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                       degrees=self.hyp['degrees'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                       translate=self.hyp['translate'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                       scale=self.hyp['scale'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                       shear=self.hyp['shear'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                       perspective=self.hyp['perspective'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                       border=self.mosaic_border)  # border to remove 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return img4, labels4 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def load_mosaic9(self, index): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # loads images in a 9-mosaic 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    labels9, segments9 = [], [] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    s = self.img_size 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    indices = [index] + random.choices(self.indices, k=8)  # 8 additional image indices 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for i, index in enumerate(indices): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Load image 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img, _, (h, w) = load_image(self, index) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # place img in img9 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if i == 0:  # center 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            h0, w0 = h, w 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        elif i == 1:  # top 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            c = s, s - h, s + w, s 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        elif i == 2:  # top right 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            c = s + wp, s - h, s + wp + w, s 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        elif i == 3:  # right 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            c = s + w0, s, s + w0 + w, s + h 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        elif i == 4:  # bottom right 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            c = s + w0, s + hp, s + w0 + w, s + hp + h 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        elif i == 5:  # bottom 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            c = s + w0 - w, s + h0, s + w0, s + h0 + h 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        elif i == 6:  # bottom left 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        elif i == 7:  # left 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            c = s - w, s + h0 - h, s, s + h0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        elif i == 8:  # top left 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            c = s - w, s + h0 - hp - h, s, s + h0 - hp 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        padx, pady = c[:2] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        x1, y1, x2, y2 = [max(x, 0) for x in c]  # allocate coords 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        labels, segments = self.labels[index].copy(), self.segments[index].copy() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if labels.size: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady)  # normalized xywh to pixel xyxy format 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            segments = [xyn2xy(x, w, h, padx, pady) for x in segments] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        labels9.append(labels) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        segments9.extend(segments) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Image 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:]  # img9[ymin:ymax, xmin:xmax] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        hp, wp = h, w  # height, width previous 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Offset 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    yc, xc = [int(random.uniform(0, s)) for _ in self.mosaic_border]  # mosaic center x, y 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Concat/clip labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    labels9 = np.concatenate(labels9, 0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    labels9[:, [1, 3]] -= xc 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    labels9[:, [2, 4]] -= yc 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    c = np.array([xc, yc])  # centers 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    segments9 = [x - c for x in segments9] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for x in (labels9[:, 1:], *segments9): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # img9, labels9 = replicate(img9, labels9)  # replicate 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Augment 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    img9, labels9 = random_perspective(img9, labels9, segments9, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                       degrees=self.hyp['degrees'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                       translate=self.hyp['translate'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                       scale=self.hyp['scale'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                       shear=self.hyp['shear'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                       perspective=self.hyp['perspective'], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                                       border=self.mosaic_border)  # border to remove 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return img9, labels9 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def replicate(img, labels): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Replicate labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    h, w = img.shape[:2] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    boxes = labels[:, 1:].astype(int) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    x1, y1, x2, y2 = boxes.T 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    s = ((x2 - x1) + (y2 - y1)) / 2  # side length (pixels) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for i in s.argsort()[:round(s.size * 0.5)]:  # smallest indices 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        x1b, y1b, x2b, y2b = boxes[i] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        bh, bw = y2b - y1b, x2b - x1b 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw))  # offset x, y 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return img, labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Resize and pad image while meeting stride-multiple constraints 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    shape = img.shape[:2]  # current shape [height, width] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    if isinstance(new_shape, int): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        new_shape = (new_shape, new_shape) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Scale ratio (new / old) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    if not scaleup:  # only scale down, do not scale up (for better test mAP) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        r = min(r, 1.0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Compute padding 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    ratio = r, r  # width, height ratios 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    if auto:  # minimum rectangle 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    elif scaleFill:  # stretch 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        dw, dh = 0.0, 0.0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        new_unpad = (new_shape[1], new_shape[0]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    dw /= 2  # divide padding into 2 sides 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    dh /= 2 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    if shape[::-1] != new_unpad:  # resize 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return img, ratio, (dw, dh) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def random_perspective(img, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                       border=(0, 0)): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # targets = [cls, xyxy] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    height = img.shape[0] + border[0] * 2  # shape(h,w,c) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    width = img.shape[1] + border[1] * 2 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Center 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    C = np.eye(3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    C[0, 2] = -img.shape[1] / 2  # x translation (pixels) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    C[1, 2] = -img.shape[0] / 2  # y translation (pixels) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Perspective 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    P = np.eye(3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Rotation and Scale 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    R = np.eye(3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    a = random.uniform(-degrees, degrees) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    s = random.uniform(1 - scale, 1 + scale) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # s = 2 ** random.uniform(-scale, scale) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Shear 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    S = np.eye(3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Translation 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    T = np.eye(3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width  # x translation (pixels) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height  # y translation (pixels) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Combined rotation matrix 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if perspective: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            img = cv2.warpPerspective(img, M, dsize=(width, height), borderValue=(114, 114, 114)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        else:  # affine 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            img = cv2.warpAffine(img, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Visualize 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # import matplotlib.pyplot as plt 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # ax[0].imshow(img[:, :, ::-1])  # base 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # ax[1].imshow(img2[:, :, ::-1])  # warped 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Transform label coordinates 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    n = len(targets) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    if n: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        use_segments = any(x.any() for x in segments) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        new = np.zeros((n, 4)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if use_segments:  # warp segments 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            segments = resample_segments(segments)  # upsample 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for i, segment in enumerate(segments): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                xy = np.ones((len(segment), 3)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                xy[:, :2] = segment 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                xy = xy @ M.T  # transform 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]  # perspective rescale or affine 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                # clip 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                new[i] = segment2box(xy, width, height) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        else:  # warp boxes 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            xy = np.ones((n * 4, 3)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            xy = xy @ M.T  # transform 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # create new boxes 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            x = xy[:, [0, 2, 4, 6]] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            y = xy[:, [1, 3, 5, 7]] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # clip 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # filter candidates 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        targets = targets[i] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        targets[:, 1:5] = new[i] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return img, targets 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def box_candidates(box1, box2, wh_thr=2, ar_thr=20, area_thr=0.1, eps=1e-16):  # box1(4,n), box2(4,n) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    w1, h1 = box1[2] - box1[0], box1[3] - box1[1] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    w2, h2 = box2[2] - box2[0], box2[3] - box2[1] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def cutout(image, labels): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Applies image cutout augmentation https://arxiv.org/abs/1708.04552 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    h, w = image.shape[:2] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    def bbox_ioa(box1, box2): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Returns the intersection over box2 area given box1, box2. box1 is 4, box2 is nx4. boxes are x1y1x2y2 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        box2 = box2.transpose() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Get the coordinates of bounding boxes 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Intersection area 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                     (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # box2 area 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + 1e-16 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Intersection over box2 area 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        return inter_area / box2_area 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # create random masks 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16  # image size fraction 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for s in scales: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        mask_h = random.randint(1, int(h * s)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        mask_w = random.randint(1, int(w * s)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # box 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        xmin = max(0, random.randint(0, w) - mask_w // 2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        ymin = max(0, random.randint(0, h) - mask_h // 2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        xmax = min(w, xmin + mask_w) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        ymax = min(h, ymin + mask_h) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # apply random color mask 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        image[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # return unobscured labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if len(labels) and s > 0.03: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            labels = labels[ioa < 0.60]  # remove >60% obscured labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    return labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def create_folder(path='./new'): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Create folder 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    if os.path.exists(path): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        shutil.rmtree(path)  # delete output folder 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    os.makedirs(path)  # make new output folder 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def flatten_recursive(path='../coco128'): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Flatten a recursive directory by bringing all files to top level 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    new_path = Path(path + '_flat') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    create_folder(new_path) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        shutil.copyfile(file, new_path / Path(file).name) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def extract_boxes(path='../coco128/'):  # from utils.datasets import *; extract_boxes('../coco128') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    # Convert detection dataset into classification dataset, with one directory per class 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    path = Path(path)  # images dir 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None  # remove existing 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    files = list(path.rglob('*.*')) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    n = len(files)  # number of files 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for im_file in tqdm(files, total=n): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if im_file.suffix[1:] in img_formats: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # image 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            im = cv2.imread(str(im_file))[..., ::-1]  # BGR to RGB 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            h, w = im.shape[:2] 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            # labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            lb_file = Path(img2label_paths([str(im_file)])[0]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if Path(lb_file).exists(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                with open(lb_file, 'r') as f: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32)  # labels 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                for j, x in enumerate(lb): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    c = int(x[0])  # class 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg'  # new filename 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    if not f.parent.is_dir(): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                        f.parent.mkdir(parents=True) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    b = x[1:] * [w, h, w, h]  # box 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    # b[2:] = b[2:].max()  # rectangle to square 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    b[2:] = b[2:] * 1.2 + 3  # pad 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    b[[0, 2]] = np.clip(b[[0, 2]], 0, w)  # clip boxes outside of image 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    b[[1, 3]] = np.clip(b[[1, 3]], 0, h) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}' 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+def autosplit(path='../coco128', weights=(0.9, 0.1, 0.0), annotated_only=False): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    Usage: from utils.datasets import *; autosplit('../coco128') 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    Arguments 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        path:           Path to images directory 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        weights:        Train, val, test weights (list) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        annotated_only: Only use images with an annotated txt file 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    """ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    path = Path(path)  # images dir 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], [])  # image files only 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    n = len(files)  # number of files 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    indices = random.choices([0, 1, 2], weights=weights, k=n)  # assign each image to a split 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt']  # 3 txt files 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    [(path / x).unlink() for x in txt if (path / x).exists()]  # remove existing 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for i, img in tqdm(zip(indices, files), total=n): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if not annotated_only or Path(img2label_paths([str(img)])[0]).exists():  # check label 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            with open(path / txt[i], 'a') as f: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                f.write(str(img) + '\n')  # add image to txt file 
			 |