h264dec.h 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852
  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG-4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264DEC_H
  27. #define AVCODEC_H264DEC_H
  28. #include "libavutil/buffer.h"
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/thread.h"
  31. #include "cabac.h"
  32. #include "error_resilience.h"
  33. #include "h264_parse.h"
  34. #include "h264_ps.h"
  35. #include "h264_sei.h"
  36. #include "h2645_parse.h"
  37. #include "h264chroma.h"
  38. #include "h264dsp.h"
  39. #include "h264pred.h"
  40. #include "h264qpel.h"
  41. #include "internal.h"
  42. #include "mpegutils.h"
  43. #include "parser.h"
  44. #include "qpeldsp.h"
  45. #include "rectangle.h"
  46. #include "videodsp.h"
  47. #define H264_MAX_PICTURE_COUNT 36
  48. #define MAX_MMCO_COUNT 66
  49. #define MAX_DELAYED_PIC_COUNT 16
  50. /* Compiling in interlaced support reduces the speed
  51. * of progressive decoding by about 2%. */
  52. #define ALLOW_INTERLACE
  53. #define FMO 0
  54. /**
  55. * The maximum number of slices supported by the decoder.
  56. * must be a power of 2
  57. */
  58. #define MAX_SLICES 32
  59. #ifdef ALLOW_INTERLACE
  60. #define MB_MBAFF(h) (h)->mb_mbaff
  61. #define MB_FIELD(sl) (sl)->mb_field_decoding_flag
  62. #define FRAME_MBAFF(h) (h)->mb_aff_frame
  63. #define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
  64. #define LEFT_MBS 2
  65. #define LTOP 0
  66. #define LBOT 1
  67. #define LEFT(i) (i)
  68. #else
  69. #define MB_MBAFF(h) 0
  70. #define MB_FIELD(sl) 0
  71. #define FRAME_MBAFF(h) 0
  72. #define FIELD_PICTURE(h) 0
  73. #undef IS_INTERLACED
  74. #define IS_INTERLACED(mb_type) 0
  75. #define LEFT_MBS 1
  76. #define LTOP 0
  77. #define LBOT 0
  78. #define LEFT(i) 0
  79. #endif
  80. #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
  81. #ifndef CABAC
  82. #define CABAC(h) (h)->ps.pps->cabac
  83. #endif
  84. #define CHROMA(h) ((h)->ps.sps->chroma_format_idc)
  85. #define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
  86. #define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
  87. #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
  88. #define MB_TYPE_8x8DCT 0x01000000
  89. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  90. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  91. /**
  92. * Memory management control operation opcode.
  93. */
  94. typedef enum MMCOOpcode {
  95. MMCO_END = 0,
  96. MMCO_SHORT2UNUSED,
  97. MMCO_LONG2UNUSED,
  98. MMCO_SHORT2LONG,
  99. MMCO_SET_MAX_LONG,
  100. MMCO_RESET,
  101. MMCO_LONG,
  102. } MMCOOpcode;
  103. /**
  104. * Memory management control operation.
  105. */
  106. typedef struct MMCO {
  107. MMCOOpcode opcode;
  108. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  109. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  110. } MMCO;
  111. typedef struct H264Picture {
  112. AVFrame *f;
  113. ThreadFrame tf;
  114. AVBufferRef *qscale_table_buf;
  115. int8_t *qscale_table;
  116. AVBufferRef *motion_val_buf[2];
  117. int16_t (*motion_val[2])[2];
  118. AVBufferRef *mb_type_buf;
  119. uint32_t *mb_type;
  120. AVBufferRef *hwaccel_priv_buf;
  121. void *hwaccel_picture_private; ///< hardware accelerator private data
  122. AVBufferRef *ref_index_buf[2];
  123. int8_t *ref_index[2];
  124. int field_poc[2]; ///< top/bottom POC
  125. int poc; ///< frame POC
  126. int frame_num; ///< frame_num (raw frame_num from slice header)
  127. int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
  128. not mix pictures before and after MMCO_RESET. */
  129. int pic_id; /**< pic_num (short -> no wrap version of pic_num,
  130. pic_num & max_pic_num; long -> long_pic_num) */
  131. int long_ref; ///< 1->long term reference 0->short term reference
  132. int ref_poc[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice)
  133. int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
  134. int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
  135. int field_picture; ///< whether or not picture was encoded in separate fields
  136. int reference;
  137. int recovered; ///< picture at IDR or recovery point + recovery count
  138. int invalid_gap;
  139. int sei_recovery_frame_cnt;
  140. } H264Picture;
  141. typedef struct H264Ref {
  142. uint8_t *data[3];
  143. int linesize[3];
  144. int reference;
  145. int poc;
  146. int pic_id;
  147. H264Picture *parent;
  148. } H264Ref;
  149. typedef struct H264SliceContext {
  150. struct H264Context *h264;
  151. GetBitContext gb;
  152. ERContext er;
  153. int slice_num;
  154. int slice_type;
  155. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  156. int slice_type_fixed;
  157. int qscale;
  158. int chroma_qp[2]; // QPc
  159. int qp_thresh; ///< QP threshold to skip loopfilter
  160. int last_qscale_diff;
  161. // deblock
  162. int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
  163. int slice_alpha_c0_offset;
  164. int slice_beta_offset;
  165. H264PredWeightTable pwt;
  166. int prev_mb_skipped;
  167. int next_mb_skipped;
  168. int chroma_pred_mode;
  169. int intra16x16_pred_mode;
  170. int8_t intra4x4_pred_mode_cache[5 * 8];
  171. int8_t(*intra4x4_pred_mode);
  172. int topleft_mb_xy;
  173. int top_mb_xy;
  174. int topright_mb_xy;
  175. int left_mb_xy[LEFT_MBS];
  176. int topleft_type;
  177. int top_type;
  178. int topright_type;
  179. int left_type[LEFT_MBS];
  180. const uint8_t *left_block;
  181. int topleft_partition;
  182. unsigned int topleft_samples_available;
  183. unsigned int top_samples_available;
  184. unsigned int topright_samples_available;
  185. unsigned int left_samples_available;
  186. ptrdiff_t linesize, uvlinesize;
  187. ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
  188. ptrdiff_t mb_uvlinesize;
  189. int mb_x, mb_y;
  190. int mb_xy;
  191. int resync_mb_x;
  192. int resync_mb_y;
  193. unsigned int first_mb_addr;
  194. // index of the first MB of the next slice
  195. int next_slice_idx;
  196. int mb_skip_run;
  197. int is_complex;
  198. int picture_structure;
  199. int mb_field_decoding_flag;
  200. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  201. int redundant_pic_count;
  202. /**
  203. * number of neighbors (top and/or left) that used 8x8 dct
  204. */
  205. int neighbor_transform_size;
  206. int direct_spatial_mv_pred;
  207. int col_parity;
  208. int col_fieldoff;
  209. int cbp;
  210. int top_cbp;
  211. int left_cbp;
  212. int dist_scale_factor[32];
  213. int dist_scale_factor_field[2][32];
  214. int map_col_to_list0[2][16 + 32];
  215. int map_col_to_list0_field[2][2][16 + 32];
  216. /**
  217. * num_ref_idx_l0/1_active_minus1 + 1
  218. */
  219. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  220. unsigned int list_count;
  221. H264Ref ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  222. * Reordered version of default_ref_list
  223. * according to picture reordering in slice header */
  224. struct {
  225. uint8_t op;
  226. uint32_t val;
  227. } ref_modifications[2][32];
  228. int nb_ref_modifications[2];
  229. unsigned int pps_id;
  230. const uint8_t *intra_pcm_ptr;
  231. int16_t *dc_val_base;
  232. uint8_t *bipred_scratchpad;
  233. uint8_t *edge_emu_buffer;
  234. uint8_t (*top_borders[2])[(16 * 3) * 2];
  235. int bipred_scratchpad_allocated;
  236. int edge_emu_buffer_allocated;
  237. int top_borders_allocated[2];
  238. /**
  239. * non zero coeff count cache.
  240. * is 64 if not available.
  241. */
  242. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
  243. /**
  244. * Motion vector cache.
  245. */
  246. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
  247. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
  248. DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
  249. uint8_t direct_cache[5 * 8];
  250. DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
  251. ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
  252. DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
  253. DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
  254. ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
  255. ///< check that i is not too large or ensure that there is some unused stuff after mb
  256. int16_t mb_padding[256 * 2];
  257. uint8_t (*mvd_table[2])[2];
  258. /**
  259. * Cabac
  260. */
  261. CABACContext cabac;
  262. uint8_t cabac_state[1024];
  263. int cabac_init_idc;
  264. MMCO mmco[MAX_MMCO_COUNT];
  265. int nb_mmco;
  266. int explicit_ref_marking;
  267. int frame_num;
  268. int poc_lsb;
  269. int delta_poc_bottom;
  270. int delta_poc[2];
  271. int curr_pic_num;
  272. int max_pic_num;
  273. } H264SliceContext;
  274. /**
  275. * H264Context
  276. */
  277. typedef struct H264Context {
  278. const AVClass *class;
  279. AVCodecContext *avctx;
  280. VideoDSPContext vdsp;
  281. H264DSPContext h264dsp;
  282. H264ChromaContext h264chroma;
  283. H264QpelContext h264qpel;
  284. H264Picture DPB[H264_MAX_PICTURE_COUNT];
  285. H264Picture *cur_pic_ptr;
  286. H264Picture cur_pic;
  287. H264Picture last_pic_for_ec;
  288. H264SliceContext *slice_ctx;
  289. int nb_slice_ctx;
  290. int nb_slice_ctx_queued;
  291. H2645Packet pkt;
  292. int pixel_shift; ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
  293. /* coded dimensions -- 16 * mb w/h */
  294. int width, height;
  295. int chroma_x_shift, chroma_y_shift;
  296. int droppable;
  297. int coded_picture_number;
  298. int context_initialized;
  299. int flags;
  300. int workaround_bugs;
  301. int x264_build;
  302. /* Set when slice threading is used and at least one slice uses deblocking
  303. * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
  304. * during normal MB decoding and execute it serially at the end.
  305. */
  306. int postpone_filter;
  307. /*
  308. * Set to 1 when the current picture is IDR, 0 otherwise.
  309. */
  310. int picture_idr;
  311. int crop_left;
  312. int crop_right;
  313. int crop_top;
  314. int crop_bottom;
  315. int8_t(*intra4x4_pred_mode);
  316. H264PredContext hpc;
  317. uint8_t (*non_zero_count)[48];
  318. #define LIST_NOT_USED -1 // FIXME rename?
  319. #define PART_NOT_AVAILABLE -2
  320. /**
  321. * block_offset[ 0..23] for frame macroblocks
  322. * block_offset[24..47] for field macroblocks
  323. */
  324. int block_offset[2 * (16 * 3)];
  325. uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
  326. uint32_t *mb2br_xy;
  327. int b_stride; // FIXME use s->b4_stride
  328. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  329. // interlacing specific flags
  330. int mb_aff_frame;
  331. int picture_structure;
  332. int first_field;
  333. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  334. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
  335. uint16_t *cbp_table;
  336. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  337. uint8_t *chroma_pred_mode_table;
  338. uint8_t (*mvd_table[2])[2];
  339. uint8_t *direct_table;
  340. uint8_t scan_padding[16];
  341. uint8_t zigzag_scan[16];
  342. uint8_t zigzag_scan8x8[64];
  343. uint8_t zigzag_scan8x8_cavlc[64];
  344. uint8_t field_scan[16];
  345. uint8_t field_scan8x8[64];
  346. uint8_t field_scan8x8_cavlc[64];
  347. uint8_t zigzag_scan_q0[16];
  348. uint8_t zigzag_scan8x8_q0[64];
  349. uint8_t zigzag_scan8x8_cavlc_q0[64];
  350. uint8_t field_scan_q0[16];
  351. uint8_t field_scan8x8_q0[64];
  352. uint8_t field_scan8x8_cavlc_q0[64];
  353. int mb_y;
  354. int mb_height, mb_width;
  355. int mb_stride;
  356. int mb_num;
  357. // =============================================================
  358. // Things below are not used in the MB or more inner code
  359. int nal_ref_idc;
  360. int nal_unit_type;
  361. int has_slice; ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()
  362. /**
  363. * Used to parse AVC variant of H.264
  364. */
  365. int is_avc; ///< this flag is != 0 if codec is avc1
  366. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  367. int bit_depth_luma; ///< luma bit depth from sps to detect changes
  368. int chroma_format_idc; ///< chroma format from sps to detect changes
  369. H264ParamSets ps;
  370. uint16_t *slice_table_base;
  371. H264POCContext poc;
  372. H264Ref default_ref[2];
  373. H264Picture *short_ref[32];
  374. H264Picture *long_ref[32];
  375. H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
  376. int last_pocs[MAX_DELAYED_PIC_COUNT];
  377. H264Picture *next_output_pic;
  378. int next_outputed_poc;
  379. /**
  380. * memory management control operations buffer.
  381. */
  382. MMCO mmco[MAX_MMCO_COUNT];
  383. int nb_mmco;
  384. int mmco_reset;
  385. int explicit_ref_marking;
  386. int long_ref_count; ///< number of actual long term references
  387. int short_ref_count; ///< number of actual short term references
  388. /**
  389. * @name Members for slice based multithreading
  390. * @{
  391. */
  392. /**
  393. * current slice number, used to initialize slice_num of each thread/context
  394. */
  395. int current_slice;
  396. /** @} */
  397. /**
  398. * Complement sei_pic_struct
  399. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  400. * However, soft telecined frames may have these values.
  401. * This is used in an attempt to flag soft telecine progressive.
  402. */
  403. int prev_interlaced_frame;
  404. /**
  405. * Are the SEI recovery points looking valid.
  406. */
  407. int valid_recovery_point;
  408. /**
  409. * recovery_frame is the frame_num at which the next frame should
  410. * be fully constructed.
  411. *
  412. * Set to -1 when not expecting a recovery point.
  413. */
  414. int recovery_frame;
  415. /**
  416. * We have seen an IDR, so all the following frames in coded order are correctly
  417. * decodable.
  418. */
  419. #define FRAME_RECOVERED_IDR (1 << 0)
  420. /**
  421. * Sufficient number of frames have been decoded since a SEI recovery point,
  422. * so all the following frames in presentation order are correct.
  423. */
  424. #define FRAME_RECOVERED_SEI (1 << 1)
  425. int frame_recovered; ///< Initial frame has been completely recovered
  426. int has_recovery_point;
  427. int missing_fields;
  428. /* for frame threading, this is set to 1
  429. * after finish_setup() has been called, so we cannot modify
  430. * some context properties (which are supposed to stay constant between
  431. * slices) anymore */
  432. int setup_finished;
  433. int cur_chroma_format_idc;
  434. int cur_bit_depth_luma;
  435. int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
  436. /* original AVCodecContext dimensions, used to handle container
  437. * cropping */
  438. int width_from_caller;
  439. int height_from_caller;
  440. int enable_er;
  441. H264SEIContext sei;
  442. AVBufferPool *qscale_table_pool;
  443. AVBufferPool *mb_type_pool;
  444. AVBufferPool *motion_val_pool;
  445. AVBufferPool *ref_index_pool;
  446. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  447. } H264Context;
  448. extern const uint16_t ff_h264_mb_sizes[4];
  449. /**
  450. * Reconstruct bitstream slice_type.
  451. */
  452. int ff_h264_get_slice_type(const H264SliceContext *sl);
  453. /**
  454. * Allocate tables.
  455. * needs width/height
  456. */
  457. int ff_h264_alloc_tables(H264Context *h);
  458. int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
  459. int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);
  460. void ff_h264_remove_all_refs(H264Context *h);
  461. /**
  462. * Execute the reference picture marking (memory management control operations).
  463. */
  464. int ff_h264_execute_ref_pic_marking(H264Context *h);
  465. int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
  466. const H2645NAL *nal, void *logctx);
  467. void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
  468. void ff_h264_decode_init_vlc(void);
  469. /**
  470. * Decode a macroblock
  471. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  472. */
  473. int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
  474. /**
  475. * Decode a CABAC coded macroblock
  476. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  477. */
  478. int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
  479. void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
  480. void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
  481. void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
  482. void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
  483. int *mb_type);
  484. void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
  485. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  486. unsigned int linesize, unsigned int uvlinesize);
  487. void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
  488. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  489. unsigned int linesize, unsigned int uvlinesize);
  490. /*
  491. * o-o o-o
  492. * / / /
  493. * o-o o-o
  494. * ,---'
  495. * o-o o-o
  496. * / / /
  497. * o-o o-o
  498. */
  499. /* Scan8 organization:
  500. * 0 1 2 3 4 5 6 7
  501. * 0 DY y y y y y
  502. * 1 y Y Y Y Y
  503. * 2 y Y Y Y Y
  504. * 3 y Y Y Y Y
  505. * 4 y Y Y Y Y
  506. * 5 DU u u u u u
  507. * 6 u U U U U
  508. * 7 u U U U U
  509. * 8 u U U U U
  510. * 9 u U U U U
  511. * 10 DV v v v v v
  512. * 11 v V V V V
  513. * 12 v V V V V
  514. * 13 v V V V V
  515. * 14 v V V V V
  516. * DY/DU/DV are for luma/chroma DC.
  517. */
  518. #define LUMA_DC_BLOCK_INDEX 48
  519. #define CHROMA_DC_BLOCK_INDEX 49
  520. // This table must be here because scan8[constant] must be known at compiletime
  521. static const uint8_t scan8[16 * 3 + 3] = {
  522. 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
  523. 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
  524. 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
  525. 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
  526. 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
  527. 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
  528. 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
  529. 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
  530. 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
  531. 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
  532. 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
  533. 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
  534. 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
  535. };
  536. static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
  537. {
  538. #if HAVE_BIGENDIAN
  539. return (b & 0xFFFF) + (a << 16);
  540. #else
  541. return (a & 0xFFFF) + (b << 16);
  542. #endif
  543. }
  544. static av_always_inline uint16_t pack8to16(unsigned a, unsigned b)
  545. {
  546. #if HAVE_BIGENDIAN
  547. return (b & 0xFF) + (a << 8);
  548. #else
  549. return (a & 0xFF) + (b << 8);
  550. #endif
  551. }
  552. /**
  553. * Get the chroma qp.
  554. */
  555. static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
  556. {
  557. return pps->chroma_qp_table[t][qscale];
  558. }
  559. /**
  560. * Get the predicted intra4x4 prediction mode.
  561. */
  562. static av_always_inline int pred_intra_mode(const H264Context *h,
  563. H264SliceContext *sl, int n)
  564. {
  565. const int index8 = scan8[n];
  566. const int left = sl->intra4x4_pred_mode_cache[index8 - 1];
  567. const int top = sl->intra4x4_pred_mode_cache[index8 - 8];
  568. const int min = FFMIN(left, top);
  569. ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
  570. if (min < 0)
  571. return DC_PRED;
  572. else
  573. return min;
  574. }
  575. static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
  576. H264SliceContext *sl)
  577. {
  578. int8_t *i4x4 = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
  579. int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
  580. AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
  581. i4x4[4] = i4x4_cache[7 + 8 * 3];
  582. i4x4[5] = i4x4_cache[7 + 8 * 2];
  583. i4x4[6] = i4x4_cache[7 + 8 * 1];
  584. }
  585. static av_always_inline void write_back_non_zero_count(const H264Context *h,
  586. H264SliceContext *sl)
  587. {
  588. const int mb_xy = sl->mb_xy;
  589. uint8_t *nnz = h->non_zero_count[mb_xy];
  590. uint8_t *nnz_cache = sl->non_zero_count_cache;
  591. AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
  592. AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
  593. AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
  594. AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
  595. AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
  596. AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
  597. AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
  598. AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
  599. if (!h->chroma_y_shift) {
  600. AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
  601. AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
  602. AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
  603. AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
  604. }
  605. }
  606. static av_always_inline void write_back_motion_list(const H264Context *h,
  607. H264SliceContext *sl,
  608. int b_stride,
  609. int b_xy, int b8_xy,
  610. int mb_type, int list)
  611. {
  612. int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
  613. int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
  614. AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
  615. AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
  616. AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
  617. AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
  618. if (CABAC(h)) {
  619. uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
  620. : h->mb2br_xy[sl->mb_xy]];
  621. uint8_t(*mvd_src)[2] = &sl->mvd_cache[list][scan8[0]];
  622. if (IS_SKIP(mb_type)) {
  623. AV_ZERO128(mvd_dst);
  624. } else {
  625. AV_COPY64(mvd_dst, mvd_src + 8 * 3);
  626. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
  627. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
  628. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
  629. }
  630. }
  631. {
  632. int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
  633. int8_t *ref_cache = sl->ref_cache[list];
  634. ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
  635. ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
  636. ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
  637. ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
  638. }
  639. }
  640. static av_always_inline void write_back_motion(const H264Context *h,
  641. H264SliceContext *sl,
  642. int mb_type)
  643. {
  644. const int b_stride = h->b_stride;
  645. const int b_xy = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
  646. const int b8_xy = 4 * sl->mb_xy;
  647. if (USES_LIST(mb_type, 0)) {
  648. write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
  649. } else {
  650. fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
  651. 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  652. }
  653. if (USES_LIST(mb_type, 1))
  654. write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
  655. if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
  656. if (IS_8X8(mb_type)) {
  657. uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
  658. direct_table[1] = sl->sub_mb_type[1] >> 1;
  659. direct_table[2] = sl->sub_mb_type[2] >> 1;
  660. direct_table[3] = sl->sub_mb_type[3] >> 1;
  661. }
  662. }
  663. }
  664. static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
  665. {
  666. if (h->ps.sps->direct_8x8_inference_flag)
  667. return !(AV_RN64A(sl->sub_mb_type) &
  668. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
  669. 0x0001000100010001ULL));
  670. else
  671. return !(AV_RN64A(sl->sub_mb_type) &
  672. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
  673. 0x0001000100010001ULL));
  674. }
  675. static inline int find_start_code(const uint8_t *buf, int buf_size,
  676. int buf_index, int next_avc)
  677. {
  678. uint32_t state = -1;
  679. buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1;
  680. return FFMIN(buf_index, buf_size);
  681. }
  682. int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
  683. int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
  684. void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
  685. int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
  686. void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
  687. /**
  688. * Submit a slice for decoding.
  689. *
  690. * Parse the slice header, starting a new field/frame if necessary. If any
  691. * slices are queued for the previous field, they are decoded.
  692. */
  693. int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
  694. int ff_h264_execute_decode_slices(H264Context *h);
  695. int ff_h264_update_thread_context(AVCodecContext *dst,
  696. const AVCodecContext *src);
  697. void ff_h264_flush_change(H264Context *h);
  698. void ff_h264_free_tables(H264Context *h);
  699. void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);
  700. #endif /* AVCODEC_H264DEC_H */