/////////////////////////////////////////////////////////////// // Copyright 2011 John Maddock. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt #ifndef BOOST_MATH_RATIONAL_ADAPTER_HPP #define BOOST_MATH_RATIONAL_ADAPTER_HPP #include <iostream> #include <iomanip> #include <sstream> #include <cstdint> #include <boost/functional/hash_fwd.hpp> #include <boost/multiprecision/number.hpp> #ifdef BOOST_MSVC #pragma warning(push) #pragma warning(disable : 4512 4127) #endif #include <boost/rational.hpp> #ifdef BOOST_MSVC #pragma warning(pop) #endif namespace boost { namespace multiprecision { namespace backends { template <class IntBackend> struct rational_adaptor { using integer_type = number<IntBackend> ; using rational_type = boost::rational<integer_type>; using signed_types = typename IntBackend::signed_types ; using unsigned_types = typename IntBackend::unsigned_types; using float_types = typename IntBackend::float_types ; rational_adaptor() noexcept(noexcept(rational_type())) {} rational_adaptor(const rational_adaptor& o) noexcept(noexcept(std::declval<rational_type&>() = std::declval<const rational_type&>())) { m_value = o.m_value; } rational_adaptor(const IntBackend& o) noexcept(noexcept(rational_type(std::declval<const IntBackend&>()))) : m_value(o) {} template <class U> rational_adaptor(const U& u, typename std::enable_if<std::is_convertible<U, IntBackend>::value>::type* = 0) : m_value(static_cast<integer_type>(u)) {} template <class U> explicit rational_adaptor(const U& u, typename std::enable_if< boost::multiprecision::detail::is_explicitly_convertible<U, IntBackend>::value && !std::is_convertible<U, IntBackend>::value>::type* = 0) : m_value(IntBackend(u)) {} template <class U> typename std::enable_if<(boost::multiprecision::detail::is_explicitly_convertible<U, IntBackend>::value && !boost::multiprecision::detail::is_arithmetic<U>::value), rational_adaptor&>::type operator=(const U& u) { m_value = IntBackend(u); return *this; } // rvalues: rational_adaptor(rational_adaptor&& o) noexcept(noexcept(rational_type(std::declval<rational_type>()))) : m_value(static_cast<rational_type&&>(o.m_value)) {} rational_adaptor(IntBackend&& o) noexcept(noexcept(rational_type(std::declval<IntBackend>()))) : m_value(static_cast<IntBackend&&>(o)) {} rational_adaptor& operator=(rational_adaptor&& o) noexcept(noexcept(std::declval<rational_type&>() = std::declval<rational_type>())) { m_value = static_cast<rational_type&&>(o.m_value); return *this; } rational_adaptor& operator=(const rational_adaptor& o) { m_value = o.m_value; return *this; } rational_adaptor& operator=(const IntBackend& o) { m_value = o; return *this; } template <class Int> typename std::enable_if<boost::multiprecision::detail::is_integral<Int>::value, rational_adaptor&>::type operator=(Int i) { m_value = i; return *this; } template <class Float> typename std::enable_if<std::is_floating_point<Float>::value, rational_adaptor&>::type operator=(Float i) { int e; Float f = std::frexp(i, &e); f = std::ldexp(f, std::numeric_limits<Float>::digits); e -= std::numeric_limits<Float>::digits; integer_type num(f); integer_type denom(1u); if (e > 0) { num <<= e; } else if (e < 0) { denom <<= -e; } m_value.assign(num, denom); return *this; } rational_adaptor& operator=(const char* s) { std::string s1; multiprecision::number<IntBackend> v1, v2; char c; bool have_hex = false; const char* p = s; // saved for later while ((0 != (c = *s)) && (c == 'x' || c == 'X' || c == '-' || c == '+' || (c >= '0' && c <= '9') || (have_hex && (c >= 'a' && c <= 'f')) || (have_hex && (c >= 'A' && c <= 'F')))) { if (c == 'x' || c == 'X') have_hex = true; s1.append(1, c); ++s; } v1.assign(s1); s1.erase(); if (c == '/') { ++s; while ((0 != (c = *s)) && (c == 'x' || c == 'X' || c == '-' || c == '+' || (c >= '0' && c <= '9') || (have_hex && (c >= 'a' && c <= 'f')) || (have_hex && (c >= 'A' && c <= 'F')))) { if (c == 'x' || c == 'X') have_hex = true; s1.append(1, c); ++s; } v2.assign(s1); } else v2 = 1; if (*s) { BOOST_THROW_EXCEPTION(std::runtime_error(std::string("Could not parse the string \"") + p + std::string("\" as a valid rational number."))); } data().assign(v1, v2); return *this; } void swap(rational_adaptor& o) { std::swap(m_value, o.m_value); } std::string str(std::streamsize digits, std::ios_base::fmtflags f) const { // // We format the string ourselves so we can match what GMP's mpq type does: // std::string result = data().numerator().str(digits, f); if (data().denominator() != 1) { result.append(1, '/'); result.append(data().denominator().str(digits, f)); } return result; } void negate() { m_value = -m_value; } int compare(const rational_adaptor& o) const { return m_value > o.m_value ? 1 : (m_value < o.m_value ? -1 : 0); } template <class Arithmatic> typename std::enable_if<boost::multiprecision::detail::is_arithmetic<Arithmatic>::value && !std::is_floating_point<Arithmatic>::value, int>::type compare(Arithmatic i) const { return m_value > i ? 1 : (m_value < i ? -1 : 0); } template <class Arithmatic> typename std::enable_if<std::is_floating_point<Arithmatic>::value, int>::type compare(Arithmatic i) const { rational_adaptor r; r = i; return this->compare(r); } rational_type& data() { return m_value; } const rational_type& data() const { return m_value; } template <class Archive> void serialize(Archive& ar, const std::integral_constant<bool, true>&) { // Saving integer_type n(m_value.numerator()), d(m_value.denominator()); ar& boost::make_nvp("numerator", n); ar& boost::make_nvp("denominator", d); } template <class Archive> void serialize(Archive& ar, const std::integral_constant<bool, false>&) { // Loading integer_type n, d; ar& boost::make_nvp("numerator", n); ar& boost::make_nvp("denominator", d); m_value.assign(n, d); } template <class Archive> void serialize(Archive& ar, const unsigned int /*version*/) { using tag = typename Archive::is_saving; using saving_tag = std::integral_constant<bool, tag::value>; serialize(ar, saving_tag()); } private: rational_type m_value; }; template <class IntBackend> inline void eval_add(rational_adaptor<IntBackend>& result, const rational_adaptor<IntBackend>& o) { result.data() += o.data(); } template <class IntBackend> inline void eval_subtract(rational_adaptor<IntBackend>& result, const rational_adaptor<IntBackend>& o) { result.data() -= o.data(); } template <class IntBackend> inline void eval_multiply(rational_adaptor<IntBackend>& result, const rational_adaptor<IntBackend>& o) { result.data() *= o.data(); } template <class IntBackend> inline void eval_divide(rational_adaptor<IntBackend>& result, const rational_adaptor<IntBackend>& o) { using default_ops::eval_is_zero; if (eval_is_zero(o)) { BOOST_THROW_EXCEPTION(std::overflow_error("Divide by zero.")); } result.data() /= o.data(); } template <class R, class IntBackend> inline typename std::enable_if<number_category<R>::value == number_kind_floating_point>::type eval_convert_to(R* result, const rational_adaptor<IntBackend>& backend) { // // The generic conversion is as good as anything we can write here: // ::boost::multiprecision::detail::generic_convert_rational_to_float(*result, backend); } template <class R, class IntBackend> inline typename std::enable_if<(number_category<R>::value != number_kind_integer) && (number_category<R>::value != number_kind_floating_point)>::type eval_convert_to(R* result, const rational_adaptor<IntBackend>& backend) { using comp_t = typename component_type<number<rational_adaptor<IntBackend> > >::type; comp_t num(backend.data().numerator()); comp_t denom(backend.data().denominator()); *result = num.template convert_to<R>(); *result /= denom.template convert_to<R>(); } template <class R, class IntBackend> inline typename std::enable_if<number_category<R>::value == number_kind_integer>::type eval_convert_to(R* result, const rational_adaptor<IntBackend>& backend) { using comp_t = typename component_type<number<rational_adaptor<IntBackend> > >::type; comp_t t = backend.data().numerator(); t /= backend.data().denominator(); *result = t.template convert_to<R>(); } template <class IntBackend> inline bool eval_is_zero(const rational_adaptor<IntBackend>& val) { using default_ops::eval_is_zero; return eval_is_zero(val.data().numerator().backend()); } template <class IntBackend> inline int eval_get_sign(const rational_adaptor<IntBackend>& val) { using default_ops::eval_get_sign; return eval_get_sign(val.data().numerator().backend()); } template <class IntBackend, class V> inline void assign_components(rational_adaptor<IntBackend>& result, const V& v1, const V& v2) { result.data().assign(v1, v2); } template <class IntBackend> inline std::size_t hash_value(const rational_adaptor<IntBackend>& val) { std::size_t result = hash_value(val.data().numerator()); boost::hash_combine(result, val.data().denominator()); return result; } } // namespace backends template <class IntBackend> struct expression_template_default<backends::rational_adaptor<IntBackend> > : public expression_template_default<IntBackend> {}; template <class IntBackend> struct number_category<backends::rational_adaptor<IntBackend> > : public std::integral_constant<int, number_kind_rational> {}; using boost::multiprecision::backends::rational_adaptor; template <class Backend, expression_template_option ExpressionTemplates> struct component_type<number<backends::rational_adaptor<Backend>, ExpressionTemplates> > { using type = number<Backend, ExpressionTemplates>; }; template <class IntBackend, expression_template_option ET> inline number<IntBackend, ET> numerator(const number<rational_adaptor<IntBackend>, ET>& val) { return val.backend().data().numerator(); } template <class IntBackend, expression_template_option ET> inline number<IntBackend, ET> denominator(const number<rational_adaptor<IntBackend>, ET>& val) { return val.backend().data().denominator(); } }} // namespace boost::multiprecision namespace std { template <class IntBackend, boost::multiprecision::expression_template_option ExpressionTemplates> class numeric_limits<boost::multiprecision::number<boost::multiprecision::rational_adaptor<IntBackend>, ExpressionTemplates> > : public std::numeric_limits<boost::multiprecision::number<IntBackend, ExpressionTemplates> > { using base_type = std::numeric_limits<boost::multiprecision::number<IntBackend> > ; using number_type = boost::multiprecision::number<boost::multiprecision::rational_adaptor<IntBackend> >; public: static constexpr bool is_integer = false; static constexpr bool is_exact = true; static constexpr number_type(min)() { return (base_type::min)(); } static constexpr number_type(max)() { return (base_type::max)(); } static constexpr number_type lowest() { return -(max)(); } static constexpr number_type epsilon() { return base_type::epsilon(); } static constexpr number_type round_error() { return epsilon() / 2; } static constexpr number_type infinity() { return base_type::infinity(); } static constexpr number_type quiet_NaN() { return base_type::quiet_NaN(); } static constexpr number_type signaling_NaN() { return base_type::signaling_NaN(); } static constexpr number_type denorm_min() { return base_type::denorm_min(); } }; template <class IntBackend, boost::multiprecision::expression_template_option ExpressionTemplates> constexpr bool numeric_limits<boost::multiprecision::number<boost::multiprecision::rational_adaptor<IntBackend>, ExpressionTemplates> >::is_integer; template <class IntBackend, boost::multiprecision::expression_template_option ExpressionTemplates> constexpr bool numeric_limits<boost::multiprecision::number<boost::multiprecision::rational_adaptor<IntBackend>, ExpressionTemplates> >::is_exact; } // namespace std #endif