// (C) Copyright John Maddock 2008. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_SPECIAL_NEXT_HPP #define BOOST_MATH_SPECIAL_NEXT_HPP #ifdef _MSC_VER #pragma once #endif #include <boost/type_traits/is_same.hpp> #include <boost/type_traits/is_integral.hpp> #include <boost/math/special_functions/math_fwd.hpp> #include <boost/math/policies/error_handling.hpp> #include <boost/math/special_functions/fpclassify.hpp> #include <boost/math/special_functions/sign.hpp> #include <boost/math/special_functions/trunc.hpp> #include <boost/math/tools/traits.hpp> #include <float.h> #if !defined(_CRAYC) && !defined(__CUDACC__) && (!defined(__GNUC__) || (__GNUC__ > 3) || ((__GNUC__ == 3) && (__GNUC_MINOR__ > 3))) #if (defined(_M_IX86_FP) && (_M_IX86_FP >= 2)) || defined(__SSE2__) #include "xmmintrin.h" #define BOOST_MATH_CHECK_SSE2 #endif #endif namespace boost{ namespace math{ namespace concepts { class real_concept; class std_real_concept; } namespace detail{ template <class T> struct has_hidden_guard_digits; template <> struct has_hidden_guard_digits<float> : public std::false_type {}; template <> struct has_hidden_guard_digits<double> : public std::false_type {}; template <> struct has_hidden_guard_digits<long double> : public std::false_type {}; #ifdef BOOST_HAS_FLOAT128 template <> struct has_hidden_guard_digits<__float128> : public std::false_type {}; #endif template <> struct has_hidden_guard_digits<boost::math::concepts::real_concept> : public std::false_type {}; template <> struct has_hidden_guard_digits<boost::math::concepts::std_real_concept> : public std::false_type {}; template <class T, bool b> struct has_hidden_guard_digits_10 : public std::false_type {}; template <class T> struct has_hidden_guard_digits_10<T, true> : public std::integral_constant<bool, (std::numeric_limits<T>::digits10 != std::numeric_limits<T>::max_digits10)> {}; template <class T> struct has_hidden_guard_digits : public has_hidden_guard_digits_10<T, std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::radix == 10) > {}; template <class T> inline const T& normalize_value(const T& val, const std::false_type&) { return val; } template <class T> inline T normalize_value(const T& val, const std::true_type&) { BOOST_STATIC_ASSERT(std::numeric_limits<T>::is_specialized); BOOST_STATIC_ASSERT(std::numeric_limits<T>::radix != 2); boost::intmax_t shift = (boost::intmax_t)std::numeric_limits<T>::digits - (boost::intmax_t)ilogb(val) - 1; T result = scalbn(val, shift); result = round(result); return scalbn(result, -shift); } template <class T> inline T get_smallest_value(std::true_type const&) { // // numeric_limits lies about denorms being present - particularly // when this can be turned on or off at runtime, as is the case // when using the SSE2 registers in DAZ or FTZ mode. // static const T m = std::numeric_limits<T>::denorm_min(); #ifdef BOOST_MATH_CHECK_SSE2 return (_mm_getcsr() & (_MM_FLUSH_ZERO_ON | 0x40)) ? tools::min_value<T>() : m; #else return ((tools::min_value<T>() / 2) == 0) ? tools::min_value<T>() : m; #endif } template <class T> inline T get_smallest_value(std::false_type const&) { return tools::min_value<T>(); } template <class T> inline T get_smallest_value() { #if defined(BOOST_MSVC) && (BOOST_MSVC <= 1310) return get_smallest_value<T>(std::integral_constant<bool, std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == 1)>()); #else return get_smallest_value<T>(std::integral_constant<bool, std::numeric_limits<T>::is_specialized && (std::numeric_limits<T>::has_denorm == std::denorm_present)>()); #endif } // // Returns the smallest value that won't generate denorms when // we calculate the value of the least-significant-bit: // template <class T> T get_min_shift_value(); template <class T> struct min_shift_initializer { struct init { init() { do_init(); } static void do_init() { get_min_shift_value<T>(); } void force_instantiate()const{} }; static const init initializer; static void force_instantiate() { initializer.force_instantiate(); } }; template <class T> const typename min_shift_initializer<T>::init min_shift_initializer<T>::initializer; template <class T> inline T calc_min_shifted(const std::true_type&) { BOOST_MATH_STD_USING return ldexp(tools::min_value<T>(), tools::digits<T>() + 1); } template <class T> inline T calc_min_shifted(const std::false_type&) { BOOST_STATIC_ASSERT(std::numeric_limits<T>::is_specialized); BOOST_STATIC_ASSERT(std::numeric_limits<T>::radix != 2); return scalbn(tools::min_value<T>(), std::numeric_limits<T>::digits + 1); } template <class T> inline T get_min_shift_value() { static const T val = calc_min_shifted<T>(std::integral_constant<bool, !std::numeric_limits<T>::is_specialized || std::numeric_limits<T>::radix == 2>()); min_shift_initializer<T>::force_instantiate(); return val; } template <class T, bool b = boost::math::tools::detail::has_backend_type<T>::value> struct exponent_type { typedef int type; }; template <class T> struct exponent_type<T, true> { typedef typename T::backend_type::exponent_type type; }; template <class T, class Policy> T float_next_imp(const T& val, const std::true_type&, const Policy& pol) { typedef typename exponent_type<T>::type exponent_type; BOOST_MATH_STD_USING exponent_type expon; static const char* function = "float_next<%1%>(%1%)"; int fpclass = (boost::math::fpclassify)(val); if((fpclass == (int)FP_NAN) || (fpclass == (int)FP_INFINITE)) { if(val < 0) return -tools::max_value<T>(); return policies::raise_domain_error<T>( function, "Argument must be finite, but got %1%", val, pol); } if(val >= tools::max_value<T>()) return policies::raise_overflow_error<T>(function, 0, pol); if(val == 0) return detail::get_smallest_value<T>(); if((fpclass != (int)FP_SUBNORMAL) && (fpclass != (int)FP_ZERO) && (fabs(val) < detail::get_min_shift_value<T>()) && (val != -tools::min_value<T>())) { // // Special case: if the value of the least significant bit is a denorm, and the result // would not be a denorm, then shift the input, increment, and shift back. // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set. // return ldexp(float_next(T(ldexp(val, 2 * tools::digits<T>())), pol), -2 * tools::digits<T>()); } if(-0.5f == frexp(val, &expon)) --expon; // reduce exponent when val is a power of two, and negative. T diff = ldexp(T(1), expon - tools::digits<T>()); if(diff == 0) diff = detail::get_smallest_value<T>(); return val + diff; } // float_next_imp // // Special version for some base other than 2: // template <class T, class Policy> T float_next_imp(const T& val, const std::false_type&, const Policy& pol) { typedef typename exponent_type<T>::type exponent_type; BOOST_STATIC_ASSERT(std::numeric_limits<T>::is_specialized); BOOST_STATIC_ASSERT(std::numeric_limits<T>::radix != 2); BOOST_MATH_STD_USING exponent_type expon; static const char* function = "float_next<%1%>(%1%)"; int fpclass = (boost::math::fpclassify)(val); if((fpclass == (int)FP_NAN) || (fpclass == (int)FP_INFINITE)) { if(val < 0) return -tools::max_value<T>(); return policies::raise_domain_error<T>( function, "Argument must be finite, but got %1%", val, pol); } if(val >= tools::max_value<T>()) return policies::raise_overflow_error<T>(function, 0, pol); if(val == 0) return detail::get_smallest_value<T>(); if((fpclass != (int)FP_SUBNORMAL) && (fpclass != (int)FP_ZERO) && (fabs(val) < detail::get_min_shift_value<T>()) && (val != -tools::min_value<T>())) { // // Special case: if the value of the least significant bit is a denorm, and the result // would not be a denorm, then shift the input, increment, and shift back. // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set. // return scalbn(float_next(T(scalbn(val, 2 * std::numeric_limits<T>::digits)), pol), -2 * std::numeric_limits<T>::digits); } expon = 1 + ilogb(val); if(-1 == scalbn(val, -expon) * std::numeric_limits<T>::radix) --expon; // reduce exponent when val is a power of base, and negative. T diff = scalbn(T(1), expon - std::numeric_limits<T>::digits); if(diff == 0) diff = detail::get_smallest_value<T>(); return val + diff; } // float_next_imp } // namespace detail template <class T, class Policy> inline typename tools::promote_args<T>::type float_next(const T& val, const Policy& pol) { typedef typename tools::promote_args<T>::type result_type; return detail::float_next_imp(detail::normalize_value(static_cast<result_type>(val), typename detail::has_hidden_guard_digits<result_type>::type()), std::integral_constant<bool, !std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2)>(), pol); } #if 0 //def BOOST_MSVC // // We used to use ::_nextafter here, but doing so fails when using // the SSE2 registers if the FTZ or DAZ flags are set, so use our own // - albeit slower - code instead as at least that gives the correct answer. // template <class Policy> inline double float_next(const double& val, const Policy& pol) { static const char* function = "float_next<%1%>(%1%)"; if(!(boost::math::isfinite)(val) && (val > 0)) return policies::raise_domain_error<double>( function, "Argument must be finite, but got %1%", val, pol); if(val >= tools::max_value<double>()) return policies::raise_overflow_error<double>(function, 0, pol); return ::_nextafter(val, tools::max_value<double>()); } #endif template <class T> inline typename tools::promote_args<T>::type float_next(const T& val) { return float_next(val, policies::policy<>()); } namespace detail{ template <class T, class Policy> T float_prior_imp(const T& val, const std::true_type&, const Policy& pol) { typedef typename exponent_type<T>::type exponent_type; BOOST_MATH_STD_USING exponent_type expon; static const char* function = "float_prior<%1%>(%1%)"; int fpclass = (boost::math::fpclassify)(val); if((fpclass == (int)FP_NAN) || (fpclass == (int)FP_INFINITE)) { if(val > 0) return tools::max_value<T>(); return policies::raise_domain_error<T>( function, "Argument must be finite, but got %1%", val, pol); } if(val <= -tools::max_value<T>()) return -policies::raise_overflow_error<T>(function, 0, pol); if(val == 0) return -detail::get_smallest_value<T>(); if((fpclass != (int)FP_SUBNORMAL) && (fpclass != (int)FP_ZERO) && (fabs(val) < detail::get_min_shift_value<T>()) && (val != tools::min_value<T>())) { // // Special case: if the value of the least significant bit is a denorm, and the result // would not be a denorm, then shift the input, increment, and shift back. // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set. // return ldexp(float_prior(T(ldexp(val, 2 * tools::digits<T>())), pol), -2 * tools::digits<T>()); } T remain = frexp(val, &expon); if(remain == 0.5f) --expon; // when val is a power of two we must reduce the exponent T diff = ldexp(T(1), expon - tools::digits<T>()); if(diff == 0) diff = detail::get_smallest_value<T>(); return val - diff; } // float_prior_imp // // Special version for bases other than 2: // template <class T, class Policy> T float_prior_imp(const T& val, const std::false_type&, const Policy& pol) { typedef typename exponent_type<T>::type exponent_type; BOOST_STATIC_ASSERT(std::numeric_limits<T>::is_specialized); BOOST_STATIC_ASSERT(std::numeric_limits<T>::radix != 2); BOOST_MATH_STD_USING exponent_type expon; static const char* function = "float_prior<%1%>(%1%)"; int fpclass = (boost::math::fpclassify)(val); if((fpclass == (int)FP_NAN) || (fpclass == (int)FP_INFINITE)) { if(val > 0) return tools::max_value<T>(); return policies::raise_domain_error<T>( function, "Argument must be finite, but got %1%", val, pol); } if(val <= -tools::max_value<T>()) return -policies::raise_overflow_error<T>(function, 0, pol); if(val == 0) return -detail::get_smallest_value<T>(); if((fpclass != (int)FP_SUBNORMAL) && (fpclass != (int)FP_ZERO) && (fabs(val) < detail::get_min_shift_value<T>()) && (val != tools::min_value<T>())) { // // Special case: if the value of the least significant bit is a denorm, and the result // would not be a denorm, then shift the input, increment, and shift back. // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set. // return scalbn(float_prior(T(scalbn(val, 2 * std::numeric_limits<T>::digits)), pol), -2 * std::numeric_limits<T>::digits); } expon = 1 + ilogb(val); T remain = scalbn(val, -expon); if(remain * std::numeric_limits<T>::radix == 1) --expon; // when val is a power of two we must reduce the exponent T diff = scalbn(T(1), expon - std::numeric_limits<T>::digits); if(diff == 0) diff = detail::get_smallest_value<T>(); return val - diff; } // float_prior_imp } // namespace detail template <class T, class Policy> inline typename tools::promote_args<T>::type float_prior(const T& val, const Policy& pol) { typedef typename tools::promote_args<T>::type result_type; return detail::float_prior_imp(detail::normalize_value(static_cast<result_type>(val), typename detail::has_hidden_guard_digits<result_type>::type()), std::integral_constant<bool, !std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2)>(), pol); } #if 0 //def BOOST_MSVC // // We used to use ::_nextafter here, but doing so fails when using // the SSE2 registers if the FTZ or DAZ flags are set, so use our own // - albeit slower - code instead as at least that gives the correct answer. // template <class Policy> inline double float_prior(const double& val, const Policy& pol) { static const char* function = "float_prior<%1%>(%1%)"; if(!(boost::math::isfinite)(val) && (val < 0)) return policies::raise_domain_error<double>( function, "Argument must be finite, but got %1%", val, pol); if(val <= -tools::max_value<double>()) return -policies::raise_overflow_error<double>(function, 0, pol); return ::_nextafter(val, -tools::max_value<double>()); } #endif template <class T> inline typename tools::promote_args<T>::type float_prior(const T& val) { return float_prior(val, policies::policy<>()); } template <class T, class U, class Policy> inline typename tools::promote_args<T, U>::type nextafter(const T& val, const U& direction, const Policy& pol) { typedef typename tools::promote_args<T, U>::type result_type; return val < direction ? boost::math::float_next<result_type>(val, pol) : val == direction ? val : boost::math::float_prior<result_type>(val, pol); } template <class T, class U> inline typename tools::promote_args<T, U>::type nextafter(const T& val, const U& direction) { return nextafter(val, direction, policies::policy<>()); } namespace detail{ template <class T, class Policy> T float_distance_imp(const T& a, const T& b, const std::true_type&, const Policy& pol) { BOOST_MATH_STD_USING // // Error handling: // static const char* function = "float_distance<%1%>(%1%, %1%)"; if(!(boost::math::isfinite)(a)) return policies::raise_domain_error<T>( function, "Argument a must be finite, but got %1%", a, pol); if(!(boost::math::isfinite)(b)) return policies::raise_domain_error<T>( function, "Argument b must be finite, but got %1%", b, pol); // // Special cases: // if(a > b) return -float_distance(b, a, pol); if(a == b) return T(0); if(a == 0) return 1 + fabs(float_distance(static_cast<T>((b < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), b, pol)); if(b == 0) return 1 + fabs(float_distance(static_cast<T>((a < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), a, pol)); if(boost::math::sign(a) != boost::math::sign(b)) return 2 + fabs(float_distance(static_cast<T>((b < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), b, pol)) + fabs(float_distance(static_cast<T>((a < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), a, pol)); // // By the time we get here, both a and b must have the same sign, we want // b > a and both positive for the following logic: // if(a < 0) return float_distance(static_cast<T>(-b), static_cast<T>(-a), pol); BOOST_ASSERT(a >= 0); BOOST_ASSERT(b >= a); int expon; // // Note that if a is a denorm then the usual formula fails // because we actually have fewer than tools::digits<T>() // significant bits in the representation: // (void)frexp(((boost::math::fpclassify)(a) == (int)FP_SUBNORMAL) ? tools::min_value<T>() : a, &expon); T upper = ldexp(T(1), expon); T result = T(0); // // If b is greater than upper, then we *must* split the calculation // as the size of the ULP changes with each order of magnitude change: // if(b > upper) { int expon2; (void)frexp(b, &expon2); T upper2 = ldexp(T(0.5), expon2); result = float_distance(upper2, b); result += (expon2 - expon - 1) * ldexp(T(1), tools::digits<T>() - 1); } // // Use compensated double-double addition to avoid rounding // errors in the subtraction: // expon = tools::digits<T>() - expon; T mb, x, y, z; if(((boost::math::fpclassify)(a) == (int)FP_SUBNORMAL) || (b - a < tools::min_value<T>())) { // // Special case - either one end of the range is a denormal, or else the difference is. // The regular code will fail if we're using the SSE2 registers on Intel and either // the FTZ or DAZ flags are set. // T a2 = ldexp(a, tools::digits<T>()); T b2 = ldexp(b, tools::digits<T>()); mb = -(std::min)(T(ldexp(upper, tools::digits<T>())), b2); x = a2 + mb; z = x - a2; y = (a2 - (x - z)) + (mb - z); expon -= tools::digits<T>(); } else { mb = -(std::min)(upper, b); x = a + mb; z = x - a; y = (a - (x - z)) + (mb - z); } if(x < 0) { x = -x; y = -y; } result += ldexp(x, expon) + ldexp(y, expon); // // Result must be an integer: // BOOST_ASSERT(result == floor(result)); return result; } // float_distance_imp // // Special versions for bases other than 2: // template <class T, class Policy> T float_distance_imp(const T& a, const T& b, const std::false_type&, const Policy& pol) { BOOST_STATIC_ASSERT(std::numeric_limits<T>::is_specialized); BOOST_STATIC_ASSERT(std::numeric_limits<T>::radix != 2); BOOST_MATH_STD_USING // // Error handling: // static const char* function = "float_distance<%1%>(%1%, %1%)"; if(!(boost::math::isfinite)(a)) return policies::raise_domain_error<T>( function, "Argument a must be finite, but got %1%", a, pol); if(!(boost::math::isfinite)(b)) return policies::raise_domain_error<T>( function, "Argument b must be finite, but got %1%", b, pol); // // Special cases: // if(a > b) return -float_distance(b, a, pol); if(a == b) return T(0); if(a == 0) return 1 + fabs(float_distance(static_cast<T>((b < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), b, pol)); if(b == 0) return 1 + fabs(float_distance(static_cast<T>((a < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), a, pol)); if(boost::math::sign(a) != boost::math::sign(b)) return 2 + fabs(float_distance(static_cast<T>((b < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), b, pol)) + fabs(float_distance(static_cast<T>((a < 0) ? T(-detail::get_smallest_value<T>()) : detail::get_smallest_value<T>()), a, pol)); // // By the time we get here, both a and b must have the same sign, we want // b > a and both positive for the following logic: // if(a < 0) return float_distance(static_cast<T>(-b), static_cast<T>(-a), pol); BOOST_ASSERT(a >= 0); BOOST_ASSERT(b >= a); boost::intmax_t expon; // // Note that if a is a denorm then the usual formula fails // because we actually have fewer than tools::digits<T>() // significant bits in the representation: // expon = 1 + ilogb(((boost::math::fpclassify)(a) == (int)FP_SUBNORMAL) ? tools::min_value<T>() : a); T upper = scalbn(T(1), expon); T result = T(0); // // If b is greater than upper, then we *must* split the calculation // as the size of the ULP changes with each order of magnitude change: // if(b > upper) { boost::intmax_t expon2 = 1 + ilogb(b); T upper2 = scalbn(T(1), expon2 - 1); result = float_distance(upper2, b); result += (expon2 - expon - 1) * scalbn(T(1), std::numeric_limits<T>::digits - 1); } // // Use compensated double-double addition to avoid rounding // errors in the subtraction: // expon = std::numeric_limits<T>::digits - expon; T mb, x, y, z; if(((boost::math::fpclassify)(a) == (int)FP_SUBNORMAL) || (b - a < tools::min_value<T>())) { // // Special case - either one end of the range is a denormal, or else the difference is. // The regular code will fail if we're using the SSE2 registers on Intel and either // the FTZ or DAZ flags are set. // T a2 = scalbn(a, std::numeric_limits<T>::digits); T b2 = scalbn(b, std::numeric_limits<T>::digits); mb = -(std::min)(T(scalbn(upper, std::numeric_limits<T>::digits)), b2); x = a2 + mb; z = x - a2; y = (a2 - (x - z)) + (mb - z); expon -= std::numeric_limits<T>::digits; } else { mb = -(std::min)(upper, b); x = a + mb; z = x - a; y = (a - (x - z)) + (mb - z); } if(x < 0) { x = -x; y = -y; } result += scalbn(x, expon) + scalbn(y, expon); // // Result must be an integer: // BOOST_ASSERT(result == floor(result)); return result; } // float_distance_imp } // namespace detail template <class T, class U, class Policy> inline typename tools::promote_args<T, U>::type float_distance(const T& a, const U& b, const Policy& pol) { // // We allow ONE of a and b to be an integer type, otherwise both must be the SAME type. // BOOST_STATIC_ASSERT_MSG( (boost::is_same<T, U>::value || (boost::is_integral<T>::value && !boost::is_integral<U>::value) || (!boost::is_integral<T>::value && boost::is_integral<U>::value) || (std::numeric_limits<T>::is_specialized && std::numeric_limits<U>::is_specialized && (std::numeric_limits<T>::digits == std::numeric_limits<U>::digits) && (std::numeric_limits<T>::radix == std::numeric_limits<U>::radix) && !std::numeric_limits<T>::is_integer && !std::numeric_limits<U>::is_integer)), "Float distance between two different floating point types is undefined."); BOOST_IF_CONSTEXPR (!boost::is_same<T, U>::value) { BOOST_IF_CONSTEXPR(boost::is_integral<T>::value) { return float_distance(static_cast<U>(a), b, pol); } else { return float_distance(a, static_cast<T>(b), pol); } } else { typedef typename tools::promote_args<T, U>::type result_type; return detail::float_distance_imp(detail::normalize_value(static_cast<result_type>(a), typename detail::has_hidden_guard_digits<result_type>::type()), detail::normalize_value(static_cast<result_type>(b), typename detail::has_hidden_guard_digits<result_type>::type()), std::integral_constant<bool, !std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2)>(), pol); } } template <class T, class U> typename tools::promote_args<T, U>::type float_distance(const T& a, const U& b) { return boost::math::float_distance(a, b, policies::policy<>()); } namespace detail{ template <class T, class Policy> T float_advance_imp(T val, int distance, const std::true_type&, const Policy& pol) { BOOST_MATH_STD_USING // // Error handling: // static const char* function = "float_advance<%1%>(%1%, int)"; int fpclass = (boost::math::fpclassify)(val); if((fpclass == (int)FP_NAN) || (fpclass == (int)FP_INFINITE)) return policies::raise_domain_error<T>( function, "Argument val must be finite, but got %1%", val, pol); if(val < 0) return -float_advance(-val, -distance, pol); if(distance == 0) return val; if(distance == 1) return float_next(val, pol); if(distance == -1) return float_prior(val, pol); if(fabs(val) < detail::get_min_shift_value<T>()) { // // Special case: if the value of the least significant bit is a denorm, // implement in terms of float_next/float_prior. // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set. // if(distance > 0) { do{ val = float_next(val, pol); } while(--distance); } else { do{ val = float_prior(val, pol); } while(++distance); } return val; } int expon; (void)frexp(val, &expon); T limit = ldexp((distance < 0 ? T(0.5f) : T(1)), expon); if(val <= tools::min_value<T>()) { limit = sign(T(distance)) * tools::min_value<T>(); } T limit_distance = float_distance(val, limit); while(fabs(limit_distance) < abs(distance)) { distance -= itrunc(limit_distance); val = limit; if(distance < 0) { limit /= 2; expon--; } else { limit *= 2; expon++; } limit_distance = float_distance(val, limit); if(distance && (limit_distance == 0)) { return policies::raise_evaluation_error<T>(function, "Internal logic failed while trying to increment floating point value %1%: most likely your FPU is in non-IEEE conforming mode.", val, pol); } } if((0.5f == frexp(val, &expon)) && (distance < 0)) --expon; T diff = 0; if(val != 0) diff = distance * ldexp(T(1), expon - tools::digits<T>()); if(diff == 0) diff = distance * detail::get_smallest_value<T>(); return val += diff; } // float_advance_imp // // Special version for bases other than 2: // template <class T, class Policy> T float_advance_imp(T val, int distance, const std::false_type&, const Policy& pol) { BOOST_STATIC_ASSERT(std::numeric_limits<T>::is_specialized); BOOST_STATIC_ASSERT(std::numeric_limits<T>::radix != 2); BOOST_MATH_STD_USING // // Error handling: // static const char* function = "float_advance<%1%>(%1%, int)"; int fpclass = (boost::math::fpclassify)(val); if((fpclass == (int)FP_NAN) || (fpclass == (int)FP_INFINITE)) return policies::raise_domain_error<T>( function, "Argument val must be finite, but got %1%", val, pol); if(val < 0) return -float_advance(-val, -distance, pol); if(distance == 0) return val; if(distance == 1) return float_next(val, pol); if(distance == -1) return float_prior(val, pol); if(fabs(val) < detail::get_min_shift_value<T>()) { // // Special case: if the value of the least significant bit is a denorm, // implement in terms of float_next/float_prior. // This avoids issues with the Intel SSE2 registers when the FTZ or DAZ flags are set. // if(distance > 0) { do{ val = float_next(val, pol); } while(--distance); } else { do{ val = float_prior(val, pol); } while(++distance); } return val; } boost::intmax_t expon = 1 + ilogb(val); T limit = scalbn(T(1), distance < 0 ? expon - 1 : expon); if(val <= tools::min_value<T>()) { limit = sign(T(distance)) * tools::min_value<T>(); } T limit_distance = float_distance(val, limit); while(fabs(limit_distance) < abs(distance)) { distance -= itrunc(limit_distance); val = limit; if(distance < 0) { limit /= std::numeric_limits<T>::radix; expon--; } else { limit *= std::numeric_limits<T>::radix; expon++; } limit_distance = float_distance(val, limit); if(distance && (limit_distance == 0)) { return policies::raise_evaluation_error<T>(function, "Internal logic failed while trying to increment floating point value %1%: most likely your FPU is in non-IEEE conforming mode.", val, pol); } } /*expon = 1 + ilogb(val); if((1 == scalbn(val, 1 + expon)) && (distance < 0)) --expon;*/ T diff = 0; if(val != 0) diff = distance * scalbn(T(1), expon - std::numeric_limits<T>::digits); if(diff == 0) diff = distance * detail::get_smallest_value<T>(); return val += diff; } // float_advance_imp } // namespace detail template <class T, class Policy> inline typename tools::promote_args<T>::type float_advance(T val, int distance, const Policy& pol) { typedef typename tools::promote_args<T>::type result_type; return detail::float_advance_imp(detail::normalize_value(static_cast<result_type>(val), typename detail::has_hidden_guard_digits<result_type>::type()), distance, std::integral_constant<bool, !std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2)>(), pol); } template <class T> inline typename tools::promote_args<T>::type float_advance(const T& val, int distance) { return boost::math::float_advance(val, distance, policies::policy<>()); } }} // boost math namespaces #endif // BOOST_MATH_SPECIAL_NEXT_HPP