// Copyright 2020 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_MEMORY_CHECKED_PTR_H_ #define BASE_MEMORY_CHECKED_PTR_H_ #include #include #include #include "base/compiler_specific.h" #include "base/logging.h" #include "build/build_config.h" // TEST: We can't use protection in the real code (yet) because it may lead to // crashes in absence of PartitionAlloc support. Setting it to 0 will disable // the protection, while preserving all calculations. #define CHECKED_PTR2_PROTECTION_ENABLED 0 #define CHECKED_PTR2_USE_NO_OP_WRAPPER 0 // Set it to 1 to avoid branches when checking if per-pointer protection is // enabled. #define CHECKED_PTR2_AVOID_BRANCH_WHEN_CHECKING_ENABLED 0 // Set it to 1 to avoid branches when dereferencing the pointer. // Must be 1 if the above is 1. #define CHECKED_PTR2_AVOID_BRANCH_WHEN_DEREFERENCING 0 namespace base { // NOTE: All methods should be ALWAYS_INLINE. CheckedPtr is meant to be a // lightweight replacement of a raw pointer, hence performance is critical. namespace internal { // These classes/structures are part of the CheckedPtr implementation. // DO NOT USE THESE CLASSES DIRECTLY YOURSELF. struct CheckedPtrNoOpImpl { // Wraps a pointer, and returns its uintptr_t representation. // Use |const volatile| to prevent compiler error. These will be dropped // anyway when casting to uintptr_t and brought back upon pointer extraction. static ALWAYS_INLINE uintptr_t WrapRawPtr(const volatile void* cv_ptr) { return reinterpret_cast(cv_ptr); } // Returns equivalent of |WrapRawPtr(nullptr)|. Separated out to make it a // constexpr. static constexpr ALWAYS_INLINE uintptr_t GetWrappedNullPtr() { // This relies on nullptr and 0 being equal in the eyes of reinterpret_cast, // which apparently isn't true in all environments. return 0; } // Unwraps the pointer's uintptr_t representation, while asserting that memory // hasn't been freed. The function is allowed to crash on nullptr. static ALWAYS_INLINE void* SafelyUnwrapPtrForDereference( uintptr_t wrapped_ptr) { return reinterpret_cast(wrapped_ptr); } // Unwraps the pointer's uintptr_t representation, while asserting that memory // hasn't been freed. The function must handle nullptr gracefully. static ALWAYS_INLINE void* SafelyUnwrapPtrForExtraction( uintptr_t wrapped_ptr) { return reinterpret_cast(wrapped_ptr); } // Unwraps the pointer's uintptr_t representation, without making an assertion // on whether memory was freed or not. static ALWAYS_INLINE void* UnsafelyUnwrapPtrForComparison( uintptr_t wrapped_ptr) { return reinterpret_cast(wrapped_ptr); } // Advance the wrapped pointer by |delta| bytes. static ALWAYS_INLINE uintptr_t Advance(uintptr_t wrapped_ptr, size_t delta) { return wrapped_ptr + delta; } // This is for accounting only, used by unit tests. static ALWAYS_INLINE void IncrementSwapCountForTest() {} }; #if defined(ARCH_CPU_64_BITS) constexpr int kValidAddressBits = 48; constexpr uintptr_t kAddressMask = (1ull << kValidAddressBits) - 1; constexpr int kGenerationBits = sizeof(uintptr_t) * 8 - kValidAddressBits; constexpr uintptr_t kGenerationMask = ~kAddressMask; constexpr int kTopBitShift = 63; constexpr uintptr_t kTopBit = 1ull << kTopBitShift; static_assert(kTopBit << 1 == 0, "kTopBit should really be the top bit"); static_assert((kTopBit & kGenerationMask) > 0, "kTopBit bit must be inside the generation region"); // TEST: Use volatile so that the read isn't optimized out. static volatile bool g_enabled = true; struct CheckedPtr2Impl { static_assert(sizeof(uintptr_t) == 8, "only 64-bit architectures are supported"); // Wraps a pointer, and returns its uintptr_t representation. static ALWAYS_INLINE uintptr_t WrapRawPtr(const volatile void* cv_ptr) { void* ptr = const_cast(cv_ptr); uintptr_t addr = reinterpret_cast(ptr); #if CHECKED_PTR2_USE_NO_OP_WRAPPER static_assert(!CHECKED_PTR2_PROTECTION_ENABLED, ""); #else // Make sure that the address bits that will be used for generation are 0. // Otherwise the logic may fail. DCHECK_EQ(ExtractGeneration(addr), 0ull); // TEST: |g_enabled| should be replaced with a check if the allocation is on // PartitionAlloc. There could be also a Finch check added. if (ptr == nullptr || !g_enabled) { return addr; } // TEST: It should be |size = base::PartitionAllocGetSize(ptr)|, however // |PartitionAllocGetSize()| will likely crash if used an a non-PA pointer. // For now, replacing it with something that always passes. // // TEST: There shouldn't be |volatile|; that's to prevent optimization of %. volatile size_t size = (addr & (addr - 1)) ^ addr; if (addr % size != 0) { DCHECK(false); return addr; } // Read the generation from 16 bits before the allocation. Then place it in // the top bits of the address. // // TODO(bartekn): Consider if casting to |volatile*| is needed. I // believe it's needed when dereferencing, not sure about here. static_assert(sizeof(uint16_t) * 8 == kGenerationBits, ""); #if CHECKED_PTR2_PROTECTION_ENABLED uintptr_t generation = *(static_cast(ptr) - 1); #else // TEST: Reading from offset -1 may crash without PA support. // Just read from offset 0 to attain the same perf characteristics as the // expected production solution. // This generation will be ignored anyway either when unwrapping or below // (depending on the algorithm variant), on the // !CHECKED_PTR2_PROTECTION_ENABLED path. uintptr_t generation = *(static_cast(ptr)); #endif // #else CHECKED_PTR2_PROTECTION_ENABLED generation <<= kValidAddressBits; addr |= generation; #if CHECKED_PTR2_AVOID_BRANCH_WHEN_CHECKING_ENABLED // Always set top bit to 1, to indicated that the protection is enabled. addr |= kTopBit; #if !CHECKED_PTR2_PROTECTION_ENABLED // TEST: Clear the generation, or else it could crash without PA support. // If the top bit was set, the unwrapper would read from before the address // address, but with it cleared, it'll read from the address itself. addr &= kAddressMask; #endif // #if !CHECKED_PTR2_PROTECTION_ENABLED #endif // #if CHECKED_PTR2_AVOID_BRANCH_WHEN_CHECKING_ENABLED #endif // #if CHECKED_PTR2_USE_NO_OP_WRAPPER return addr; } // Returns equivalent of |WrapRawPtr(nullptr)|. Separated out to make it a // constexpr. static constexpr ALWAYS_INLINE uintptr_t GetWrappedNullPtr() { return kWrappedNullPtr; } static ALWAYS_INLINE uintptr_t SafelyUnwrapPtrInternal(uintptr_t wrapped_ptr) { #if CHECKED_PTR2_AVOID_BRANCH_WHEN_CHECKING_ENABLED // Top bit tells if the protection is enabled. Use it to decide whether to // read the word before the allocation, which exists only if the protection // is enabled. Otherwise it may crash, in which case read the data from the // beginning of the allocation instead and ignore it later. All this magic // is to avoid a branch, for performance reasons. // // A couple examples, assuming 64-bit system (continued below): // Ex.1: wrapped_ptr=0x8442000012345678 // => enabled=0x8000000000000000 // => offset=1 // Ex.2: wrapped_ptr=0x0000000012345678 // => enabled=0x0000000000000000 // => offset=0 uintptr_t enabled = wrapped_ptr & kTopBit; // We can't have protection disabled and generation set in the same time. DCHECK(!(enabled == 0 && (ExtractGeneration(wrapped_ptr)) != 0)); uintptr_t offset = enabled >> kTopBitShift; // 0 or 1 // Use offset to decide if the generation should be read at the beginning or // before the allocation. // TODO(bartekn): Do something about 1-byte allocations. Reading 2-byte // generation at the allocation could crash. This case is executed // specifically for non-PartitionAlloc pointers, so we can't make // assumptions about alignment. // // Cast to volatile to ensure memory is read. E.g. in a tight loop, the // compiler could cache the value in a register and thus could miss that // another thread freed memory and cleared generation. // // Examples (continued): // Ex.1: generation_ptr=0x0000000012345676 // a) if pointee wasn't freed, read e.g. generation=0x0442 (could be // also 0x8442, the top bit is overwritten later) // b) if pointee was freed, read e.g. generation=0x1234 (could be // anything) // Ex.2: generation_ptr=0x0000000012345678, read e.g. 0x2345 (doesn't // matter what we read, as long as this read doesn't crash) volatile uint16_t* generation_ptr = reinterpret_cast(ExtractAddress(wrapped_ptr)) - offset; uintptr_t generation = *generation_ptr; // Shift generation into the right place and add back the enabled bit. // // Examples (continued): // Ex.1: // a) generation=0x8442000000000000 // a) generation=0x9234000000000000 // Ex.2: generation=0x2345000000000000 generation <<= kValidAddressBits; generation |= enabled; // If the protection isn't enabled, clear top bits. Casting to a signed // type makes >> sign extend the last bit. // // Examples (continued): // Ex.1: mask=0xffff000000000000 // a) generation=0x8442000000000000 // b) generation=0x9234000000000000 // Ex.2: mask=0x0000000000000000 => generation=0x0000000000000000 uintptr_t mask = static_cast(enabled) >> (kGenerationBits - 1); generation &= mask; // Use hardware to detect generation mismatch. CPU will crash if top bits // aren't all 0 (technically it won't if all bits are 1, but that's a kernel // mode address, which isn't allowed either... also, top bit will be always // zeroed out). // // Examples (continued): // Ex.1: // a) returning 0x0000000012345678 // b) returning 0x1676000012345678 (this will generate a desired crash) // Ex.2: returning 0x0000000012345678 static_assert(CHECKED_PTR2_AVOID_BRANCH_WHEN_DEREFERENCING, ""); return generation ^ wrapped_ptr; #else // #if CHECKED_PTR2_AVOID_BRANCH_WHEN_CHECKING_ENABLED uintptr_t ptr_generation = wrapped_ptr >> kValidAddressBits; if (ptr_generation > 0) { // Read generation from before the allocation. // // Cast to volatile to ensure memory is read. E.g. in a tight loop, the // compiler could cache the value in a register and thus could miss that // another thread freed memory and cleared generation. #if CHECKED_PTR2_PROTECTION_ENABLED uintptr_t read_generation = *(reinterpret_cast(ExtractAddress(wrapped_ptr)) - 1); #else // TEST: Reading from before the pointer may crash. See more above... uintptr_t read_generation = *(reinterpret_cast(ExtractAddress(wrapped_ptr))); #endif #if CHECKED_PTR2_AVOID_BRANCH_WHEN_DEREFERENCING // Use hardware to detect generation mismatch. CPU will crash if top bits // aren't all 0 (technically it won't if all bits are 1, but that's a // kernel mode address, which isn't allowed either). read_generation <<= kValidAddressBits; return read_generation ^ wrapped_ptr; #else #if CHECKED_PTR2_PROTECTION_ENABLED if (UNLIKELY(ptr_generation != read_generation)) IMMEDIATE_CRASH(); #else // TEST: Use volatile to prevent optimizing out the calculations leading // to this point. volatile bool x = false; if (ptr_generation != read_generation) x = true; #endif // #else CHECKED_PTR2_PROTECTION_ENABLED return wrapped_ptr & kAddressMask; #endif // #else CHECKED_PTR2_AVOID_BRANCH_WHEN_DEREFERENCING } return wrapped_ptr; #endif // #else CHECKED_PTR2_AVOID_BRANCH_WHEN_CHECKING_ENABLED } // Unwraps the pointer's uintptr_t representation, while asserting that memory // hasn't been freed. The function is allowed to crash on nullptr. static ALWAYS_INLINE void* SafelyUnwrapPtrForDereference( uintptr_t wrapped_ptr) { #if CHECKED_PTR2_PROTECTION_ENABLED return reinterpret_cast(SafelyUnwrapPtrInternal(wrapped_ptr)); #else // TEST: Use volatile to prevent optimizing out the calculations leading to // this point. // |SafelyUnwrapPtrInternal| was separated out solely for this purpose. volatile uintptr_t addr = SafelyUnwrapPtrInternal(wrapped_ptr); return reinterpret_cast(addr); #endif } // Unwraps the pointer's uintptr_t representation, while asserting that memory // hasn't been freed. The function must handle nullptr gracefully. static ALWAYS_INLINE void* SafelyUnwrapPtrForExtraction( uintptr_t wrapped_ptr) { #if CHECKED_PTR2_AVOID_BRANCH_WHEN_CHECKING_ENABLED // In this implementation SafelyUnwrapPtrForDereference doesn't tolerate // nullptr, because it reads unconditionally to avoid branches. Handle the // nullptr case here. if (wrapped_ptr == kWrappedNullPtr) return nullptr; return reinterpret_cast(SafelyUnwrapPtrForDereference(wrapped_ptr)); #else // In this implementation SafelyUnwrapPtrForDereference handles nullptr case // well. return reinterpret_cast(SafelyUnwrapPtrForDereference(wrapped_ptr)); #endif } // Unwraps the pointer's uintptr_t representation, without making an assertion // on whether memory was freed or not. static ALWAYS_INLINE void* UnsafelyUnwrapPtrForComparison( uintptr_t wrapped_ptr) { return reinterpret_cast(ExtractAddress(wrapped_ptr)); } // Advance the wrapped pointer by |delta| bytes. static ALWAYS_INLINE uintptr_t Advance(uintptr_t wrapped_ptr, size_t delta) { // Mask out the generation to disable the protection. It's not supported for // pointers inside an allocation. return ExtractAddress(wrapped_ptr) + delta; } // This is for accounting only, used by unit tests. static ALWAYS_INLINE void IncrementSwapCountForTest() {} private: static ALWAYS_INLINE uintptr_t ExtractAddress(uintptr_t wrapped_ptr) { return wrapped_ptr & kAddressMask; } static ALWAYS_INLINE uintptr_t ExtractGeneration(uintptr_t wrapped_ptr) { return wrapped_ptr & kGenerationMask; } // This relies on nullptr and 0 being equal in the eyes of reinterpret_cast, // which apparently isn't true in some rare environments. static constexpr uintptr_t kWrappedNullPtr = 0; }; #endif // #if defined(ARCH_CPU_64_BITS) template struct DereferencedPointerType { using Type = decltype(*std::declval()); }; // This explicitly doesn't define any type aliases, since dereferencing void is // invalid. template <> struct DereferencedPointerType {}; } // namespace internal // DO NOT USE! EXPERIMENTAL ONLY! This is helpful for local testing! // // CheckedPtr is meant to be a pointer wrapper, that will crash on // Use-After-Free (UaF) to prevent security issues. This is very much in the // experimental phase. More context in: // https://docs.google.com/document/d/1pnnOAIz_DMWDI4oIOFoMAqLnf_MZ2GsrJNb_dbQ3ZBg // // For now, CheckedPtr is a no-op wrapper to aid local testing. // // Goals for this API: // 1. Minimize amount of caller-side changes as much as physically possible. // 2. Keep this class as small as possible, while still satisfying goal #1 (i.e. // we aren't striving to maximize compatibility with raw pointers, merely // adding support for cases encountered so far). template #else typename Impl = internal::CheckedPtrNoOpImpl> #endif class CheckedPtr { public: // CheckedPtr can be trivially default constructed (leaving |wrapped_ptr_| // uninitialized). This is needed for compatibility with raw pointers. // // TODO(lukasza): Always initialize |wrapped_ptr_|. Fix resulting build // errors. Analyze performance impact. constexpr CheckedPtr() noexcept = default; // Deliberately implicit, because CheckedPtr is supposed to resemble raw ptr. // NOLINTNEXTLINE(runtime/explicit) constexpr ALWAYS_INLINE CheckedPtr(nullptr_t) noexcept : wrapped_ptr_(Impl::GetWrappedNullPtr()) {} // Deliberately implicit, because CheckedPtr is supposed to resemble raw ptr. // NOLINTNEXTLINE(runtime/explicit) ALWAYS_INLINE CheckedPtr(T* p) noexcept : wrapped_ptr_(Impl::WrapRawPtr(p)) {} // In addition to nullptr_t ctor above, CheckedPtr needs to have these // as |=default| or |constexpr| to avoid hitting -Wglobal-constructors in // cases like this: // struct SomeStruct { int int_field; CheckedPtr ptr_field; }; // SomeStruct g_global_var = { 123, nullptr }; CheckedPtr(const CheckedPtr&) noexcept = default; CheckedPtr(CheckedPtr&&) noexcept = default; CheckedPtr& operator=(const CheckedPtr&) noexcept = default; CheckedPtr& operator=(CheckedPtr&&) noexcept = default; ALWAYS_INLINE CheckedPtr& operator=(T* p) noexcept { wrapped_ptr_ = Impl::WrapRawPtr(p); return *this; } ALWAYS_INLINE CheckedPtr& operator=(std::nullptr_t) noexcept { wrapped_ptr_ = Impl::GetWrappedNullPtr(); return *this; } ~CheckedPtr() = default; // Avoid using. The goal of CheckedPtr is to be as close to raw pointer as // possible, so use it only if absolutely necessary (e.g. for const_cast). ALWAYS_INLINE T* get() const { return GetForExtraction(); } explicit ALWAYS_INLINE operator bool() const { return wrapped_ptr_ != Impl::GetWrappedNullPtr(); } // Use SFINAE to avoid defining |operator*| for T=void, which wouldn't compile // due to |void&|. template ::Type> ALWAYS_INLINE V& operator*() const { return *GetForDereference(); } ALWAYS_INLINE T* operator->() const { return GetForDereference(); } // Deliberately implicit, because CheckedPtr is supposed to resemble raw ptr. // NOLINTNEXTLINE(runtime/explicit) ALWAYS_INLINE operator T*() const { return GetForExtraction(); } template explicit ALWAYS_INLINE operator U*() const { return static_cast(GetForExtraction()); } ALWAYS_INLINE CheckedPtr& operator++() { wrapped_ptr_ = Impl::Advance(wrapped_ptr_, sizeof(T)); return *this; } ALWAYS_INLINE CheckedPtr& operator--() { wrapped_ptr_ = Impl::Advance(wrapped_ptr_, -sizeof(T)); return *this; } ALWAYS_INLINE CheckedPtr operator++(int /* post_increment */) { CheckedPtr result = *this; ++(*this); return result; } ALWAYS_INLINE CheckedPtr operator--(int /* post_decrement */) { CheckedPtr result = *this; --(*this); return result; } ALWAYS_INLINE CheckedPtr& operator+=(ptrdiff_t delta_elems) { wrapped_ptr_ = Impl::Advance(wrapped_ptr_, delta_elems * sizeof(T)); return *this; } ALWAYS_INLINE CheckedPtr& operator-=(ptrdiff_t delta_elems) { return *this += -delta_elems; } // Be careful to cover all cases with CheckedPtr being on both sides, left // side only and right side only. If any case is missed, a more costly // |operator T*()| will get called, instead of |operator==|. friend ALWAYS_INLINE bool operator==(const CheckedPtr& lhs, const CheckedPtr& rhs) { return lhs.GetForComparison() == rhs.GetForComparison(); } friend ALWAYS_INLINE bool operator!=(const CheckedPtr& lhs, const CheckedPtr& rhs) { return !(lhs == rhs); } friend ALWAYS_INLINE bool operator==(const CheckedPtr& lhs, T* rhs) { return lhs.GetForComparison() == rhs; } friend ALWAYS_INLINE bool operator!=(const CheckedPtr& lhs, T* rhs) { return !(lhs == rhs); } friend ALWAYS_INLINE bool operator==(T* lhs, const CheckedPtr& rhs) { return rhs == lhs; // Reverse order to call the operator above. } friend ALWAYS_INLINE bool operator!=(T* lhs, const CheckedPtr& rhs) { return rhs != lhs; // Reverse order to call the operator above. } // Needed for cases like |derived_ptr == base_ptr|. Without these, a more // costly |operator T*()| will get called, instead of |operator==|. template friend ALWAYS_INLINE bool operator==(const CheckedPtr& lhs, const CheckedPtr& rhs) { // Add |const volatile| when casting, in case |U| has any. Even if |T| // doesn't, comparison between |T*| and |const volatile T*| is fine. return lhs.GetForComparison() == static_cast*>(rhs.GetForComparison()); } template friend ALWAYS_INLINE bool operator!=(const CheckedPtr& lhs, const CheckedPtr& rhs) { return !(lhs == rhs); } template friend ALWAYS_INLINE bool operator==(const CheckedPtr& lhs, U* rhs) { // Add |const volatile| when casting, in case |U| has any. Even if |T| // doesn't, comparison between |T*| and |const volatile T*| is fine. return lhs.GetForComparison() == static_cast*>(rhs); } template friend ALWAYS_INLINE bool operator!=(const CheckedPtr& lhs, U* rhs) { return !(lhs == rhs); } template friend ALWAYS_INLINE bool operator==(U* lhs, const CheckedPtr& rhs) { return rhs == lhs; // Reverse order to call the operator above. } template friend ALWAYS_INLINE bool operator!=(U* lhs, const CheckedPtr& rhs) { return rhs != lhs; // Reverse order to call the operator above. } // Needed for comparisons against nullptr. Without these, a slightly more // costly version would be called that extracts wrapped pointer, as opposed // to plain comparison against 0. friend ALWAYS_INLINE bool operator==(const CheckedPtr& lhs, nullptr_t) { return !lhs; } friend ALWAYS_INLINE bool operator!=(const CheckedPtr& lhs, nullptr_t) { return !!lhs; // Use !! otherwise the costly implicit cast will be used. } friend ALWAYS_INLINE bool operator==(nullptr_t, const CheckedPtr& rhs) { return !rhs; } friend ALWAYS_INLINE bool operator!=(nullptr_t, const CheckedPtr& rhs) { return !!rhs; // Use !! otherwise the costly implicit cast will be used. } friend ALWAYS_INLINE void swap(CheckedPtr& lhs, CheckedPtr& rhs) noexcept { Impl::IncrementSwapCountForTest(); std::swap(lhs.wrapped_ptr_, rhs.wrapped_ptr_); } private: // This getter is meant for situations where the pointer is meant to be // dereferenced. It is allowed to crash on nullptr (it may or may not), // because it knows that the caller will crash on nullptr. ALWAYS_INLINE T* GetForDereference() const { return static_cast(Impl::SafelyUnwrapPtrForDereference(wrapped_ptr_)); } // This getter is meant for situations where the raw pointer is meant to be // extracted outside of this class, but not necessarily with an intention to // dereference. It mustn't crash on nullptr. ALWAYS_INLINE T* GetForExtraction() const { return static_cast(Impl::SafelyUnwrapPtrForExtraction(wrapped_ptr_)); } // This getter is meant *only* for situations where the pointer is meant to be // compared (guaranteeing no dereference or extraction outside of this class). // Any verifications can and should be skipped for performance reasons. ALWAYS_INLINE T* GetForComparison() const { return static_cast(Impl::UnsafelyUnwrapPtrForComparison(wrapped_ptr_)); } // Store the pointer as |uintptr_t|, because depending on implementation, its // unused bits may be re-purposed to store extra information. uintptr_t wrapped_ptr_; template friend class CheckedPtr; }; } // namespace base using base::CheckedPtr; #endif // BASE_MEMORY_CHECKED_PTR_H_