/* * Copyright 2017 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Minimum and maximum // =================== // // rtc::SafeMin(x, y) // rtc::SafeMax(x, y) // // (These are both constexpr.) // // Accept two arguments of either any two integral or any two floating-point // types, and return the smaller and larger value, respectively, with no // truncation or wrap-around. If only one of the input types is statically // guaranteed to be able to represent the result, the return type is that type; // if either one would do, the result type is the smaller type. (One of these // two cases always applies.) // // * The case with one floating-point and one integral type is not allowed, // because the floating-point type will have greater range, but may not // have sufficient precision to represent the integer value exactly.) // // Clamp (a.k.a. constrain to a given interval) // ============================================ // // rtc::SafeClamp(x, a, b) // // Accepts three arguments of any mix of integral types or any mix of // floating-point types, and returns the value in the closed interval [a, b] // that is closest to x (that is, if x < a it returns a; if x > b it returns b; // and if a <= x <= b it returns x). As for SafeMin() and SafeMax(), there is // no truncation or wrap-around. The result type // // 1. is statically guaranteed to be able to represent the result; // // 2. is no larger than the largest of the three argument types; and // // 3. has the same signedness as the type of the first argument, if this is // possible without violating the First or Second Law. // // There is always at least one type that meets criteria 1 and 2. If more than // one type meets these criteria equally well, the result type is one of the // types that is smallest. Note that unlike SafeMin() and SafeMax(), // SafeClamp() will sometimes pick a return type that isn't the type of any of // its arguments. // // * In this context, a type A is smaller than a type B if it has a smaller // range; that is, if A::max() - A::min() < B::max() - B::min(). For // example, int8_t < int16_t == uint16_t < int32_t, and all integral types // are smaller than all floating-point types.) // // * As for SafeMin and SafeMax, mixing integer and floating-point arguments // is not allowed, because floating-point types have greater range than // integer types, but do not have sufficient precision to represent the // values of most integer types exactly. // // Requesting a specific return type // ================================= // // All three functions allow callers to explicitly specify the return type as a // template parameter, overriding the default return type. E.g. // // rtc::SafeMin<int>(x, y) // returns an int // // If the requested type is statically guaranteed to be able to represent the // result, then everything's fine, and the return type is as requested. But if // the requested type is too small, a static_assert is triggered. #ifndef RTC_BASE_NUMERICS_SAFE_MINMAX_H_ #define RTC_BASE_NUMERICS_SAFE_MINMAX_H_ #include <limits> #include <type_traits> #include "rtc_base/checks.h" #include "rtc_base/numerics/safe_compare.h" #include "rtc_base/type_traits.h" namespace rtc { namespace safe_minmax_impl { // Make the range of a type available via something other than a constexpr // function, to work around MSVC limitations. See // https://blogs.msdn.microsoft.com/vcblog/2015/12/02/partial-support-for-expression-sfinae-in-vs-2015-update-1/ template <typename T> struct Limits { static constexpr T lowest = std::numeric_limits<T>::lowest(); static constexpr T max = std::numeric_limits<T>::max(); }; template <typename T, bool is_enum = std::is_enum<T>::value> struct UnderlyingType; template <typename T> struct UnderlyingType<T, false> { using type = T; }; template <typename T> struct UnderlyingType<T, true> { using type = typename std::underlying_type<T>::type; }; // Given two types T1 and T2, find types that can hold the smallest (in // ::min_t) and the largest (in ::max_t) of the two values. template <typename T1, typename T2, bool int1 = IsIntlike<T1>::value, bool int2 = IsIntlike<T2>::value> struct MType { static_assert(int1 == int2, "You may not mix integral and floating-point arguments"); }; // Specialization for when neither type is integral (and therefore presumably // floating-point). template <typename T1, typename T2> struct MType<T1, T2, false, false> { using min_t = typename std::common_type<T1, T2>::type; static_assert(std::is_same<min_t, T1>::value || std::is_same<min_t, T2>::value, ""); using max_t = typename std::common_type<T1, T2>::type; static_assert(std::is_same<max_t, T1>::value || std::is_same<max_t, T2>::value, ""); }; // Specialization for when both types are integral. template <typename T1, typename T2> struct MType<T1, T2, true, true> { // The type with the lowest minimum value. In case of a tie, the type with // the lowest maximum value. In case that too is a tie, the types have the // same range, and we arbitrarily pick T1. using min_t = typename std::conditional< SafeLt(Limits<T1>::lowest, Limits<T2>::lowest), T1, typename std::conditional< SafeGt(Limits<T1>::lowest, Limits<T2>::lowest), T2, typename std::conditional<SafeLe(Limits<T1>::max, Limits<T2>::max), T1, T2>::type>::type>::type; static_assert(std::is_same<min_t, T1>::value || std::is_same<min_t, T2>::value, ""); // The type with the highest maximum value. In case of a tie, the types have // the same range (because in C++, integer types with the same maximum also // have the same minimum). static_assert(SafeNe(Limits<T1>::max, Limits<T2>::max) || SafeEq(Limits<T1>::lowest, Limits<T2>::lowest), "integer types with the same max should have the same min"); using max_t = typename std:: conditional<SafeGe(Limits<T1>::max, Limits<T2>::max), T1, T2>::type; static_assert(std::is_same<max_t, T1>::value || std::is_same<max_t, T2>::value, ""); }; // A dummy type that we pass around at compile time but never actually use. // Declared but not defined. struct DefaultType; // ::type is A, except we fall back to B if A is DefaultType. We static_assert // that the chosen type can hold all values that B can hold. template <typename A, typename B> struct TypeOr { using type = typename std:: conditional<std::is_same<A, DefaultType>::value, B, A>::type; static_assert(SafeLe(Limits<type>::lowest, Limits<B>::lowest) && SafeGe(Limits<type>::max, Limits<B>::max), "The specified type isn't large enough"); static_assert(IsIntlike<type>::value == IsIntlike<B>::value && std::is_floating_point<type>::value == std::is_floating_point<type>::value, "float<->int conversions not allowed"); }; } // namespace safe_minmax_impl template < typename R = safe_minmax_impl::DefaultType, typename T1 = safe_minmax_impl::DefaultType, typename T2 = safe_minmax_impl::DefaultType, typename R2 = typename safe_minmax_impl::TypeOr< R, typename safe_minmax_impl::MType< typename safe_minmax_impl::UnderlyingType<T1>::type, typename safe_minmax_impl::UnderlyingType<T2>::type>::min_t>::type> constexpr R2 SafeMin(T1 a, T2 b) { static_assert(IsIntlike<T1>::value || std::is_floating_point<T1>::value, "The first argument must be integral or floating-point"); static_assert(IsIntlike<T2>::value || std::is_floating_point<T2>::value, "The second argument must be integral or floating-point"); return SafeLt(a, b) ? static_cast<R2>(a) : static_cast<R2>(b); } template < typename R = safe_minmax_impl::DefaultType, typename T1 = safe_minmax_impl::DefaultType, typename T2 = safe_minmax_impl::DefaultType, typename R2 = typename safe_minmax_impl::TypeOr< R, typename safe_minmax_impl::MType< typename safe_minmax_impl::UnderlyingType<T1>::type, typename safe_minmax_impl::UnderlyingType<T2>::type>::max_t>::type> constexpr R2 SafeMax(T1 a, T2 b) { static_assert(IsIntlike<T1>::value || std::is_floating_point<T1>::value, "The first argument must be integral or floating-point"); static_assert(IsIntlike<T2>::value || std::is_floating_point<T2>::value, "The second argument must be integral or floating-point"); return SafeGt(a, b) ? static_cast<R2>(a) : static_cast<R2>(b); } namespace safe_minmax_impl { // Given three types T, L, and H, let ::type be a suitable return value for // SafeClamp(T, L, H). See the docs at the top of this file for details. template <typename T, typename L, typename H, bool int1 = IsIntlike<T>::value, bool int2 = IsIntlike<L>::value, bool int3 = IsIntlike<H>::value> struct ClampType { static_assert(int1 == int2 && int1 == int3, "You may not mix integral and floating-point arguments"); }; // Specialization for when all three types are floating-point. template <typename T, typename L, typename H> struct ClampType<T, L, H, false, false, false> { using type = typename std::common_type<T, L, H>::type; }; // Specialization for when all three types are integral. template <typename T, typename L, typename H> struct ClampType<T, L, H, true, true, true> { private: // Range of the return value. The return type must be able to represent this // full range. static constexpr auto r_min = SafeMax(Limits<L>::lowest, SafeMin(Limits<H>::lowest, Limits<T>::lowest)); static constexpr auto r_max = SafeMin(Limits<H>::max, SafeMax(Limits<L>::max, Limits<T>::max)); // Is the given type an acceptable return type? (That is, can it represent // all possible return values, and is it no larger than the largest of the // input types?) template <typename A> struct AcceptableType { private: static constexpr bool not_too_large = sizeof(A) <= sizeof(L) || sizeof(A) <= sizeof(H) || sizeof(A) <= sizeof(T); static constexpr bool range_contained = SafeLe(Limits<A>::lowest, r_min) && SafeLe(r_max, Limits<A>::max); public: static constexpr bool value = not_too_large && range_contained; }; using best_signed_type = typename std::conditional< AcceptableType<int8_t>::value, int8_t, typename std::conditional< AcceptableType<int16_t>::value, int16_t, typename std::conditional<AcceptableType<int32_t>::value, int32_t, int64_t>::type>::type>::type; using best_unsigned_type = typename std::conditional< AcceptableType<uint8_t>::value, uint8_t, typename std::conditional< AcceptableType<uint16_t>::value, uint16_t, typename std::conditional<AcceptableType<uint32_t>::value, uint32_t, uint64_t>::type>::type>::type; public: // Pick the best type, preferring the same signedness as T but falling back // to the other one if necessary. using type = typename std::conditional< std::is_signed<T>::value, typename std::conditional<AcceptableType<best_signed_type>::value, best_signed_type, best_unsigned_type>::type, typename std::conditional<AcceptableType<best_unsigned_type>::value, best_unsigned_type, best_signed_type>::type>::type; static_assert(AcceptableType<type>::value, ""); }; } // namespace safe_minmax_impl template < typename R = safe_minmax_impl::DefaultType, typename T = safe_minmax_impl::DefaultType, typename L = safe_minmax_impl::DefaultType, typename H = safe_minmax_impl::DefaultType, typename R2 = typename safe_minmax_impl::TypeOr< R, typename safe_minmax_impl::ClampType< typename safe_minmax_impl::UnderlyingType<T>::type, typename safe_minmax_impl::UnderlyingType<L>::type, typename safe_minmax_impl::UnderlyingType<H>::type>::type>::type> R2 SafeClamp(T x, L min, H max) { static_assert(IsIntlike<H>::value || std::is_floating_point<H>::value, "The first argument must be integral or floating-point"); static_assert(IsIntlike<T>::value || std::is_floating_point<T>::value, "The second argument must be integral or floating-point"); static_assert(IsIntlike<L>::value || std::is_floating_point<L>::value, "The third argument must be integral or floating-point"); RTC_DCHECK_LE(min, max); return SafeLe(x, min) ? static_cast<R2>(min) : SafeGe(x, max) ? static_cast<R2>(max) : static_cast<R2>(x); } } // namespace rtc #endif // RTC_BASE_NUMERICS_SAFE_MINMAX_H_