mathematics.h 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300
  1. /*
  2. * copyright (c) 2005-2012 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file
  22. * @addtogroup lavu_math
  23. * Mathematical utilities for working with timestamp and time base.
  24. */
  25. #ifndef AVUTIL_MATHEMATICS_H
  26. #define AVUTIL_MATHEMATICS_H
  27. #include <stdint.h>
  28. #include <math.h>
  29. #include "attributes.h"
  30. #include "rational.h"
  31. #include "intfloat.h"
  32. #ifndef M_E
  33. #define M_E 2.7182818284590452354 /* e */
  34. #endif
  35. #ifndef M_Ef
  36. #define M_Ef 2.7182818284590452354f /* e */
  37. #endif
  38. #ifndef M_LN2
  39. #define M_LN2 0.69314718055994530942 /* log_e 2 */
  40. #endif
  41. #ifndef M_LN2f
  42. #define M_LN2f 0.69314718055994530942f /* log_e 2 */
  43. #endif
  44. #ifndef M_LN10
  45. #define M_LN10 2.30258509299404568402 /* log_e 10 */
  46. #endif
  47. #ifndef M_LN10f
  48. #define M_LN10f 2.30258509299404568402f /* log_e 10 */
  49. #endif
  50. #ifndef M_LOG2_10
  51. #define M_LOG2_10 3.32192809488736234787 /* log_2 10 */
  52. #endif
  53. #ifndef M_LOG2_10f
  54. #define M_LOG2_10f 3.32192809488736234787f /* log_2 10 */
  55. #endif
  56. #ifndef M_PHI
  57. #define M_PHI 1.61803398874989484820 /* phi / golden ratio */
  58. #endif
  59. #ifndef M_PHIf
  60. #define M_PHIf 1.61803398874989484820f /* phi / golden ratio */
  61. #endif
  62. #ifndef M_PI
  63. #define M_PI 3.14159265358979323846 /* pi */
  64. #endif
  65. #ifndef M_PIf
  66. #define M_PIf 3.14159265358979323846f /* pi */
  67. #endif
  68. #ifndef M_PI_2
  69. #define M_PI_2 1.57079632679489661923 /* pi/2 */
  70. #endif
  71. #ifndef M_PI_2f
  72. #define M_PI_2f 1.57079632679489661923f /* pi/2 */
  73. #endif
  74. #ifndef M_PI_4
  75. #define M_PI_4 0.78539816339744830962 /* pi/4 */
  76. #endif
  77. #ifndef M_PI_4f
  78. #define M_PI_4f 0.78539816339744830962f /* pi/4 */
  79. #endif
  80. #ifndef M_1_PI
  81. #define M_1_PI 0.31830988618379067154 /* 1/pi */
  82. #endif
  83. #ifndef M_1_PIf
  84. #define M_1_PIf 0.31830988618379067154f /* 1/pi */
  85. #endif
  86. #ifndef M_2_PI
  87. #define M_2_PI 0.63661977236758134308 /* 2/pi */
  88. #endif
  89. #ifndef M_2_PIf
  90. #define M_2_PIf 0.63661977236758134308f /* 2/pi */
  91. #endif
  92. #ifndef M_2_SQRTPI
  93. #define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
  94. #endif
  95. #ifndef M_2_SQRTPIf
  96. #define M_2_SQRTPIf 1.12837916709551257390f /* 2/sqrt(pi) */
  97. #endif
  98. #ifndef M_SQRT1_2
  99. #define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
  100. #endif
  101. #ifndef M_SQRT1_2f
  102. #define M_SQRT1_2f 0.70710678118654752440f /* 1/sqrt(2) */
  103. #endif
  104. #ifndef M_SQRT2
  105. #define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
  106. #endif
  107. #ifndef M_SQRT2f
  108. #define M_SQRT2f 1.41421356237309504880f /* sqrt(2) */
  109. #endif
  110. #ifndef NAN
  111. #define NAN av_int2float(0x7fc00000)
  112. #endif
  113. #ifndef INFINITY
  114. #define INFINITY av_int2float(0x7f800000)
  115. #endif
  116. /**
  117. * @addtogroup lavu_math
  118. *
  119. * @{
  120. */
  121. /**
  122. * Rounding methods.
  123. */
  124. enum AVRounding {
  125. AV_ROUND_ZERO = 0, ///< Round toward zero.
  126. AV_ROUND_INF = 1, ///< Round away from zero.
  127. AV_ROUND_DOWN = 2, ///< Round toward -infinity.
  128. AV_ROUND_UP = 3, ///< Round toward +infinity.
  129. AV_ROUND_NEAR_INF = 5, ///< Round to nearest and halfway cases away from zero.
  130. /**
  131. * Flag telling rescaling functions to pass `INT64_MIN`/`MAX` through
  132. * unchanged, avoiding special cases for #AV_NOPTS_VALUE.
  133. *
  134. * Unlike other values of the enumeration AVRounding, this value is a
  135. * bitmask that must be used in conjunction with another value of the
  136. * enumeration through a bitwise OR, in order to set behavior for normal
  137. * cases.
  138. *
  139. * @code{.c}
  140. * av_rescale_rnd(3, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX);
  141. * // Rescaling 3:
  142. * // Calculating 3 * 1 / 2
  143. * // 3 / 2 is rounded up to 2
  144. * // => 2
  145. *
  146. * av_rescale_rnd(AV_NOPTS_VALUE, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX);
  147. * // Rescaling AV_NOPTS_VALUE:
  148. * // AV_NOPTS_VALUE == INT64_MIN
  149. * // AV_NOPTS_VALUE is passed through
  150. * // => AV_NOPTS_VALUE
  151. * @endcode
  152. */
  153. AV_ROUND_PASS_MINMAX = 8192,
  154. };
  155. /**
  156. * Compute the greatest common divisor of two integer operands.
  157. *
  158. * @param a Operand
  159. * @param b Operand
  160. * @return GCD of a and b up to sign; if a >= 0 and b >= 0, return value is >= 0;
  161. * if a == 0 and b == 0, returns 0.
  162. */
  163. int64_t av_const av_gcd(int64_t a, int64_t b);
  164. /**
  165. * Rescale a 64-bit integer with rounding to nearest.
  166. *
  167. * The operation is mathematically equivalent to `a * b / c`, but writing that
  168. * directly can overflow.
  169. *
  170. * This function is equivalent to av_rescale_rnd() with #AV_ROUND_NEAR_INF.
  171. *
  172. * @see av_rescale_rnd(), av_rescale_q(), av_rescale_q_rnd()
  173. */
  174. int64_t av_rescale(int64_t a, int64_t b, int64_t c) av_const;
  175. /**
  176. * Rescale a 64-bit integer with specified rounding.
  177. *
  178. * The operation is mathematically equivalent to `a * b / c`, but writing that
  179. * directly can overflow, and does not support different rounding methods.
  180. * If the result is not representable then INT64_MIN is returned.
  181. *
  182. * @see av_rescale(), av_rescale_q(), av_rescale_q_rnd()
  183. */
  184. int64_t av_rescale_rnd(int64_t a, int64_t b, int64_t c, enum AVRounding rnd) av_const;
  185. /**
  186. * Rescale a 64-bit integer by 2 rational numbers.
  187. *
  188. * The operation is mathematically equivalent to `a * bq / cq`.
  189. *
  190. * This function is equivalent to av_rescale_q_rnd() with #AV_ROUND_NEAR_INF.
  191. *
  192. * @see av_rescale(), av_rescale_rnd(), av_rescale_q_rnd()
  193. */
  194. int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq) av_const;
  195. /**
  196. * Rescale a 64-bit integer by 2 rational numbers with specified rounding.
  197. *
  198. * The operation is mathematically equivalent to `a * bq / cq`.
  199. *
  200. * @see av_rescale(), av_rescale_rnd(), av_rescale_q()
  201. */
  202. int64_t av_rescale_q_rnd(int64_t a, AVRational bq, AVRational cq,
  203. enum AVRounding rnd) av_const;
  204. /**
  205. * Compare two timestamps each in its own time base.
  206. *
  207. * @return One of the following values:
  208. * - -1 if `ts_a` is before `ts_b`
  209. * - 1 if `ts_a` is after `ts_b`
  210. * - 0 if they represent the same position
  211. *
  212. * @warning
  213. * The result of the function is undefined if one of the timestamps is outside
  214. * the `int64_t` range when represented in the other's timebase.
  215. */
  216. int av_compare_ts(int64_t ts_a, AVRational tb_a, int64_t ts_b, AVRational tb_b);
  217. /**
  218. * Compare the remainders of two integer operands divided by a common divisor.
  219. *
  220. * In other words, compare the least significant `log2(mod)` bits of integers
  221. * `a` and `b`.
  222. *
  223. * @code{.c}
  224. * av_compare_mod(0x11, 0x02, 0x10) < 0 // since 0x11 % 0x10 (0x1) < 0x02 % 0x10 (0x2)
  225. * av_compare_mod(0x11, 0x02, 0x20) > 0 // since 0x11 % 0x20 (0x11) > 0x02 % 0x20 (0x02)
  226. * @endcode
  227. *
  228. * @param a Operand
  229. * @param b Operand
  230. * @param mod Divisor; must be a power of 2
  231. * @return
  232. * - a negative value if `a % mod < b % mod`
  233. * - a positive value if `a % mod > b % mod`
  234. * - zero if `a % mod == b % mod`
  235. */
  236. int64_t av_compare_mod(uint64_t a, uint64_t b, uint64_t mod);
  237. /**
  238. * Rescale a timestamp while preserving known durations.
  239. *
  240. * This function is designed to be called per audio packet to scale the input
  241. * timestamp to a different time base. Compared to a simple av_rescale_q()
  242. * call, this function is robust against possible inconsistent frame durations.
  243. *
  244. * The `last` parameter is a state variable that must be preserved for all
  245. * subsequent calls for the same stream. For the first call, `*last` should be
  246. * initialized to #AV_NOPTS_VALUE.
  247. *
  248. * @param[in] in_tb Input time base
  249. * @param[in] in_ts Input timestamp
  250. * @param[in] fs_tb Duration time base; typically this is finer-grained
  251. * (greater) than `in_tb` and `out_tb`
  252. * @param[in] duration Duration till the next call to this function (i.e.
  253. * duration of the current packet/frame)
  254. * @param[in,out] last Pointer to a timestamp expressed in terms of
  255. * `fs_tb`, acting as a state variable
  256. * @param[in] out_tb Output timebase
  257. * @return Timestamp expressed in terms of `out_tb`
  258. *
  259. * @note In the context of this function, "duration" is in term of samples, not
  260. * seconds.
  261. */
  262. int64_t av_rescale_delta(AVRational in_tb, int64_t in_ts, AVRational fs_tb, int duration, int64_t *last, AVRational out_tb);
  263. /**
  264. * Add a value to a timestamp.
  265. *
  266. * This function guarantees that when the same value is repeatly added that
  267. * no accumulation of rounding errors occurs.
  268. *
  269. * @param[in] ts Input timestamp
  270. * @param[in] ts_tb Input timestamp time base
  271. * @param[in] inc Value to be added
  272. * @param[in] inc_tb Time base of `inc`
  273. */
  274. int64_t av_add_stable(AVRational ts_tb, int64_t ts, AVRational inc_tb, int64_t inc);
  275. /**
  276. * 0th order modified bessel function of the first kind.
  277. */
  278. double av_bessel_i0(double x);
  279. /**
  280. * @}
  281. */
  282. #endif /* AVUTIL_MATHEMATICS_H */