123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300 |
- /*
- * copyright (c) 2005-2012 Michael Niedermayer <michaelni@gmx.at>
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- */
- /**
- * @file
- * @addtogroup lavu_math
- * Mathematical utilities for working with timestamp and time base.
- */
- #ifndef AVUTIL_MATHEMATICS_H
- #define AVUTIL_MATHEMATICS_H
- #include <stdint.h>
- #include <math.h>
- #include "attributes.h"
- #include "rational.h"
- #include "intfloat.h"
- #ifndef M_E
- #define M_E 2.7182818284590452354 /* e */
- #endif
- #ifndef M_Ef
- #define M_Ef 2.7182818284590452354f /* e */
- #endif
- #ifndef M_LN2
- #define M_LN2 0.69314718055994530942 /* log_e 2 */
- #endif
- #ifndef M_LN2f
- #define M_LN2f 0.69314718055994530942f /* log_e 2 */
- #endif
- #ifndef M_LN10
- #define M_LN10 2.30258509299404568402 /* log_e 10 */
- #endif
- #ifndef M_LN10f
- #define M_LN10f 2.30258509299404568402f /* log_e 10 */
- #endif
- #ifndef M_LOG2_10
- #define M_LOG2_10 3.32192809488736234787 /* log_2 10 */
- #endif
- #ifndef M_LOG2_10f
- #define M_LOG2_10f 3.32192809488736234787f /* log_2 10 */
- #endif
- #ifndef M_PHI
- #define M_PHI 1.61803398874989484820 /* phi / golden ratio */
- #endif
- #ifndef M_PHIf
- #define M_PHIf 1.61803398874989484820f /* phi / golden ratio */
- #endif
- #ifndef M_PI
- #define M_PI 3.14159265358979323846 /* pi */
- #endif
- #ifndef M_PIf
- #define M_PIf 3.14159265358979323846f /* pi */
- #endif
- #ifndef M_PI_2
- #define M_PI_2 1.57079632679489661923 /* pi/2 */
- #endif
- #ifndef M_PI_2f
- #define M_PI_2f 1.57079632679489661923f /* pi/2 */
- #endif
- #ifndef M_PI_4
- #define M_PI_4 0.78539816339744830962 /* pi/4 */
- #endif
- #ifndef M_PI_4f
- #define M_PI_4f 0.78539816339744830962f /* pi/4 */
- #endif
- #ifndef M_1_PI
- #define M_1_PI 0.31830988618379067154 /* 1/pi */
- #endif
- #ifndef M_1_PIf
- #define M_1_PIf 0.31830988618379067154f /* 1/pi */
- #endif
- #ifndef M_2_PI
- #define M_2_PI 0.63661977236758134308 /* 2/pi */
- #endif
- #ifndef M_2_PIf
- #define M_2_PIf 0.63661977236758134308f /* 2/pi */
- #endif
- #ifndef M_2_SQRTPI
- #define M_2_SQRTPI 1.12837916709551257390 /* 2/sqrt(pi) */
- #endif
- #ifndef M_2_SQRTPIf
- #define M_2_SQRTPIf 1.12837916709551257390f /* 2/sqrt(pi) */
- #endif
- #ifndef M_SQRT1_2
- #define M_SQRT1_2 0.70710678118654752440 /* 1/sqrt(2) */
- #endif
- #ifndef M_SQRT1_2f
- #define M_SQRT1_2f 0.70710678118654752440f /* 1/sqrt(2) */
- #endif
- #ifndef M_SQRT2
- #define M_SQRT2 1.41421356237309504880 /* sqrt(2) */
- #endif
- #ifndef M_SQRT2f
- #define M_SQRT2f 1.41421356237309504880f /* sqrt(2) */
- #endif
- #ifndef NAN
- #define NAN av_int2float(0x7fc00000)
- #endif
- #ifndef INFINITY
- #define INFINITY av_int2float(0x7f800000)
- #endif
- /**
- * @addtogroup lavu_math
- *
- * @{
- */
- /**
- * Rounding methods.
- */
- enum AVRounding {
- AV_ROUND_ZERO = 0, ///< Round toward zero.
- AV_ROUND_INF = 1, ///< Round away from zero.
- AV_ROUND_DOWN = 2, ///< Round toward -infinity.
- AV_ROUND_UP = 3, ///< Round toward +infinity.
- AV_ROUND_NEAR_INF = 5, ///< Round to nearest and halfway cases away from zero.
- /**
- * Flag telling rescaling functions to pass `INT64_MIN`/`MAX` through
- * unchanged, avoiding special cases for #AV_NOPTS_VALUE.
- *
- * Unlike other values of the enumeration AVRounding, this value is a
- * bitmask that must be used in conjunction with another value of the
- * enumeration through a bitwise OR, in order to set behavior for normal
- * cases.
- *
- * @code{.c}
- * av_rescale_rnd(3, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX);
- * // Rescaling 3:
- * // Calculating 3 * 1 / 2
- * // 3 / 2 is rounded up to 2
- * // => 2
- *
- * av_rescale_rnd(AV_NOPTS_VALUE, 1, 2, AV_ROUND_UP | AV_ROUND_PASS_MINMAX);
- * // Rescaling AV_NOPTS_VALUE:
- * // AV_NOPTS_VALUE == INT64_MIN
- * // AV_NOPTS_VALUE is passed through
- * // => AV_NOPTS_VALUE
- * @endcode
- */
- AV_ROUND_PASS_MINMAX = 8192,
- };
- /**
- * Compute the greatest common divisor of two integer operands.
- *
- * @param a Operand
- * @param b Operand
- * @return GCD of a and b up to sign; if a >= 0 and b >= 0, return value is >= 0;
- * if a == 0 and b == 0, returns 0.
- */
- int64_t av_const av_gcd(int64_t a, int64_t b);
- /**
- * Rescale a 64-bit integer with rounding to nearest.
- *
- * The operation is mathematically equivalent to `a * b / c`, but writing that
- * directly can overflow.
- *
- * This function is equivalent to av_rescale_rnd() with #AV_ROUND_NEAR_INF.
- *
- * @see av_rescale_rnd(), av_rescale_q(), av_rescale_q_rnd()
- */
- int64_t av_rescale(int64_t a, int64_t b, int64_t c) av_const;
- /**
- * Rescale a 64-bit integer with specified rounding.
- *
- * The operation is mathematically equivalent to `a * b / c`, but writing that
- * directly can overflow, and does not support different rounding methods.
- * If the result is not representable then INT64_MIN is returned.
- *
- * @see av_rescale(), av_rescale_q(), av_rescale_q_rnd()
- */
- int64_t av_rescale_rnd(int64_t a, int64_t b, int64_t c, enum AVRounding rnd) av_const;
- /**
- * Rescale a 64-bit integer by 2 rational numbers.
- *
- * The operation is mathematically equivalent to `a * bq / cq`.
- *
- * This function is equivalent to av_rescale_q_rnd() with #AV_ROUND_NEAR_INF.
- *
- * @see av_rescale(), av_rescale_rnd(), av_rescale_q_rnd()
- */
- int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq) av_const;
- /**
- * Rescale a 64-bit integer by 2 rational numbers with specified rounding.
- *
- * The operation is mathematically equivalent to `a * bq / cq`.
- *
- * @see av_rescale(), av_rescale_rnd(), av_rescale_q()
- */
- int64_t av_rescale_q_rnd(int64_t a, AVRational bq, AVRational cq,
- enum AVRounding rnd) av_const;
- /**
- * Compare two timestamps each in its own time base.
- *
- * @return One of the following values:
- * - -1 if `ts_a` is before `ts_b`
- * - 1 if `ts_a` is after `ts_b`
- * - 0 if they represent the same position
- *
- * @warning
- * The result of the function is undefined if one of the timestamps is outside
- * the `int64_t` range when represented in the other's timebase.
- */
- int av_compare_ts(int64_t ts_a, AVRational tb_a, int64_t ts_b, AVRational tb_b);
- /**
- * Compare the remainders of two integer operands divided by a common divisor.
- *
- * In other words, compare the least significant `log2(mod)` bits of integers
- * `a` and `b`.
- *
- * @code{.c}
- * av_compare_mod(0x11, 0x02, 0x10) < 0 // since 0x11 % 0x10 (0x1) < 0x02 % 0x10 (0x2)
- * av_compare_mod(0x11, 0x02, 0x20) > 0 // since 0x11 % 0x20 (0x11) > 0x02 % 0x20 (0x02)
- * @endcode
- *
- * @param a Operand
- * @param b Operand
- * @param mod Divisor; must be a power of 2
- * @return
- * - a negative value if `a % mod < b % mod`
- * - a positive value if `a % mod > b % mod`
- * - zero if `a % mod == b % mod`
- */
- int64_t av_compare_mod(uint64_t a, uint64_t b, uint64_t mod);
- /**
- * Rescale a timestamp while preserving known durations.
- *
- * This function is designed to be called per audio packet to scale the input
- * timestamp to a different time base. Compared to a simple av_rescale_q()
- * call, this function is robust against possible inconsistent frame durations.
- *
- * The `last` parameter is a state variable that must be preserved for all
- * subsequent calls for the same stream. For the first call, `*last` should be
- * initialized to #AV_NOPTS_VALUE.
- *
- * @param[in] in_tb Input time base
- * @param[in] in_ts Input timestamp
- * @param[in] fs_tb Duration time base; typically this is finer-grained
- * (greater) than `in_tb` and `out_tb`
- * @param[in] duration Duration till the next call to this function (i.e.
- * duration of the current packet/frame)
- * @param[in,out] last Pointer to a timestamp expressed in terms of
- * `fs_tb`, acting as a state variable
- * @param[in] out_tb Output timebase
- * @return Timestamp expressed in terms of `out_tb`
- *
- * @note In the context of this function, "duration" is in term of samples, not
- * seconds.
- */
- int64_t av_rescale_delta(AVRational in_tb, int64_t in_ts, AVRational fs_tb, int duration, int64_t *last, AVRational out_tb);
- /**
- * Add a value to a timestamp.
- *
- * This function guarantees that when the same value is repeatly added that
- * no accumulation of rounding errors occurs.
- *
- * @param[in] ts Input timestamp
- * @param[in] ts_tb Input timestamp time base
- * @param[in] inc Value to be added
- * @param[in] inc_tb Time base of `inc`
- */
- int64_t av_add_stable(AVRational ts_tb, int64_t ts, AVRational inc_tb, int64_t inc);
- /**
- * 0th order modified bessel function of the first kind.
- */
- double av_bessel_i0(double x);
- /**
- * @}
- */
- #endif /* AVUTIL_MATHEMATICS_H */
|