chengkaiqiang 6213262140 v-0.1.1-1:20240806 | 3 months ago | |
---|---|---|
.. | ||
launch | 3 months ago | |
nodes | 3 months ago | |
scripts | 3 months ago | |
src | 3 months ago | |
test | 3 months ago | |
CMakeLists.txt | 3 months ago | |
README.md | 3 months ago | |
__init__.py | 3 months ago | |
setup.py | 3 months ago |
Camera-LiDAR calibration is performed in two steps:
The intrinsics are obtained using the autoware_camera_calibration
script, which is a fork of the official ROS calibration tool.
rosrun autoware_camera_lidar_calibrator cameracalibrator.py --square SQUARE_SIZE --size MxN image:=/image_topic
CALIBRATE
button.SAVE
button.YYYYmmdd_HHMM_autoware_camera_calibration.yaml
.This file will contain the intrinsic calibration to rectify the image.
Flag | Parameter | Type | Description |
---|---|---|---|
--square | SQUARE_SIZE |
double | Defines the size of the checkerboard square in meters. |
--size | MxN |
string | Defines the layout size of the checkerboard (inner size). |
image:= | image |
string | Topic name of the camera image source topic in raw format (color or b&w). |
--min_samples | min_samples |
integer | Defines the minimum number of samples required to allow calibration. |
--detection | engine |
string | Chessboard detection engine, default cv2 or matlab |
For extra details please visit: http://www.ros.org/wiki/camera_calibration
This node additionally supports the Matlab engine for chessboard detection, which is faster and more robust than the OpenCV implementation.
/PATH/TO/MATLAB/R201XY/extern/engines/python
.python setup.py install
to setup Matlab bindings.To use this engine, add --detection matlab
to the list of arguments, i.e.\
rosrun autoware_camera_lidar_calibrator cameracalibrator.py --detection matlab --square SQUARE_SIZE --size MxN image:=/image_topic
Camera-LiDAR extrinsic calibration is performed by clicking on corresponding points in the image and the point cloud.
This node uses clicked_point
and screenpoint
from the rviz
and image_view2
packages respectively.
YYYYmmdd_HHMM_autoware_camera_calibration.yaml
).roslaunch autoware_camera_lidar_calibrator camera_lidar_calibration.launch intrinsics_file:=/PATH/TO/YYYYmmdd_HHMM_autoware_camera_calibration.yaml image_src:=/image
YYYYmmdd_HHMM_autoware_lidar_camera_calibration.yaml
.This file can be used with Autoware's Calibration Publisher to publish and register the transformation between the LiDAR and camera. The file contains both the intrinsic and extrinsic parameters.
Parameter | Type | Description |
---|---|---|
image_src |
string | Topic name of the camera image source topic. Default: /image_raw . |
camera_id |
string | If working with more than one camera, set this to the correct camera namespace, i.e. /camera0 . |
intrinsics_file |
string | Topic name of the camera image source topic in raw format (color or b&w). |
compressed_stream |
bool | If set to true, a node to convert the image from a compressed stream to an uncompressed one will be launched. |
To test the calibration results, the generated yaml file can be used in the Calibration Publisher
and then the Points Image
in the Sensing tab.
This calibration tool assumes that the Velodyne is installed with the default order of axes for the Velodyne sensor.