| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 | 
							- /*
 
-  *  Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
 
-  *
 
-  *  Use of this source code is governed by a BSD-style license
 
-  *  that can be found in the LICENSE file in the root of the source
 
-  *  tree. An additional intellectual property rights grant can be found
 
-  *  in the file PATENTS.  All contributing project authors may
 
-  *  be found in the AUTHORS file in the root of the source tree.
 
-  */
 
- #ifndef API_NUMERICS_RUNNING_STATISTICS_H_
 
- #define API_NUMERICS_RUNNING_STATISTICS_H_
 
- #include <algorithm>
 
- #include <cmath>
 
- #include <limits>
 
- #include "absl/types/optional.h"
 
- #include "rtc_base/checks.h"
 
- #include "rtc_base/numerics/math_utils.h"
 
- namespace webrtc {
 
- namespace webrtc_impl {
 
- // tl;dr: Robust and efficient online computation of statistics,
 
- //        using Welford's method for variance. [1]
 
- //
 
- // This should be your go-to class if you ever need to compute
 
- // min, max, mean, variance and standard deviation.
 
- // If you need to get percentiles, please use webrtc::SamplesStatsCounter.
 
- //
 
- // Please note RemoveSample() won't affect min and max.
 
- // If you want a full-fledged moving window over N last samples,
 
- // please use webrtc::RollingAccumulator.
 
- //
 
- // The measures return absl::nullopt if no samples were fed (Size() == 0),
 
- // otherwise the returned optional is guaranteed to contain a value.
 
- //
 
- // [1]
 
- // https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_online_algorithm
 
- // The type T is a scalar which must be convertible to double.
 
- // Rationale: we often need greater precision for measures
 
- //            than for the samples themselves.
 
- template <typename T>
 
- class RunningStatistics {
 
-  public:
 
-   // Update stats ////////////////////////////////////////////
 
-   // Add a value participating in the statistics in O(1) time.
 
-   void AddSample(T sample) {
 
-     max_ = std::max(max_, sample);
 
-     min_ = std::min(min_, sample);
 
-     ++size_;
 
-     // Welford's incremental update.
 
-     const double delta = sample - mean_;
 
-     mean_ += delta / size_;
 
-     const double delta2 = sample - mean_;
 
-     cumul_ += delta * delta2;
 
-   }
 
-   // Remove a previously added value in O(1) time.
 
-   // Nb: This doesn't affect min or max.
 
-   // Calling RemoveSample when Size()==0 is incorrect.
 
-   void RemoveSample(T sample) {
 
-     RTC_DCHECK_GT(Size(), 0);
 
-     // In production, just saturate at 0.
 
-     if (Size() == 0) {
 
-       return;
 
-     }
 
-     // Since samples order doesn't matter, this is the
 
-     // exact reciprocal of Welford's incremental update.
 
-     --size_;
 
-     const double delta = sample - mean_;
 
-     mean_ -= delta / size_;
 
-     const double delta2 = sample - mean_;
 
-     cumul_ -= delta * delta2;
 
-   }
 
-   // Merge other stats, as if samples were added one by one, but in O(1).
 
-   void MergeStatistics(const RunningStatistics<T>& other) {
 
-     if (other.size_ == 0) {
 
-       return;
 
-     }
 
-     max_ = std::max(max_, other.max_);
 
-     min_ = std::min(min_, other.min_);
 
-     const int64_t new_size = size_ + other.size_;
 
-     const double new_mean =
 
-         (mean_ * size_ + other.mean_ * other.size_) / new_size;
 
-     // Each cumulant must be corrected.
 
-     //   * from: sum((x_i - mean_)²)
 
-     //   * to:   sum((x_i - new_mean)²)
 
-     auto delta = [new_mean](const RunningStatistics<T>& stats) {
 
-       return stats.size_ * (new_mean * (new_mean - 2 * stats.mean_) +
 
-                             stats.mean_ * stats.mean_);
 
-     };
 
-     cumul_ = cumul_ + delta(*this) + other.cumul_ + delta(other);
 
-     mean_ = new_mean;
 
-     size_ = new_size;
 
-   }
 
-   // Get Measures ////////////////////////////////////////////
 
-   // Returns number of samples involved via AddSample() or MergeStatistics(),
 
-   // minus number of times RemoveSample() was called.
 
-   int64_t Size() const { return size_; }
 
-   // Returns minimum among all seen samples, in O(1) time.
 
-   // This isn't affected by RemoveSample().
 
-   absl::optional<T> GetMin() const {
 
-     if (size_ == 0) {
 
-       return absl::nullopt;
 
-     }
 
-     return min_;
 
-   }
 
-   // Returns maximum among all seen samples, in O(1) time.
 
-   // This isn't affected by RemoveSample().
 
-   absl::optional<T> GetMax() const {
 
-     if (size_ == 0) {
 
-       return absl::nullopt;
 
-     }
 
-     return max_;
 
-   }
 
-   // Returns mean in O(1) time.
 
-   absl::optional<double> GetMean() const {
 
-     if (size_ == 0) {
 
-       return absl::nullopt;
 
-     }
 
-     return mean_;
 
-   }
 
-   // Returns unbiased sample variance in O(1) time.
 
-   absl::optional<double> GetVariance() const {
 
-     if (size_ == 0) {
 
-       return absl::nullopt;
 
-     }
 
-     return cumul_ / size_;
 
-   }
 
-   // Returns unbiased standard deviation in O(1) time.
 
-   absl::optional<double> GetStandardDeviation() const {
 
-     if (size_ == 0) {
 
-       return absl::nullopt;
 
-     }
 
-     return std::sqrt(*GetVariance());
 
-   }
 
-  private:
 
-   int64_t size_ = 0;  // Samples seen.
 
-   T min_ = infinity_or_max<T>();
 
-   T max_ = minus_infinity_or_min<T>();
 
-   double mean_ = 0;
 
-   double cumul_ = 0;  // Variance * size_, sometimes noted m2.
 
- };
 
- }  // namespace webrtc_impl
 
- }  // namespace webrtc
 
- #endif  // API_NUMERICS_RUNNING_STATISTICS_H_
 
 
  |