// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_ #define BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_ #include #include #include #include #include "base/base_export.h" #include "base/location.h" #include "base/message_loop/message_pump.h" #include "base/observer_list.h" #include "base/optional.h" #include "base/threading/thread_checker.h" #include "base/time/time.h" #include "base/win/message_window.h" #include "base/win/scoped_handle.h" namespace base { // MessagePumpWin serves as the base for specialized versions of the MessagePump // for Windows. It provides basic functionality like handling of observers and // controlling the lifetime of the message pump. class BASE_EXPORT MessagePumpWin : public MessagePump { public: MessagePumpWin(); ~MessagePumpWin() override; // MessagePump methods: void Run(Delegate* delegate) override; void Quit() override; protected: struct RunState { Delegate* delegate; // Used to flag that the current Run() invocation should return ASAP. bool should_quit; // Used to count how many Run() invocations are on the stack. int run_depth; }; virtual void DoRunLoop() = 0; // True iff: // * MessagePumpForUI: there's a kMsgDoWork message pending in the Windows // Message queue. i.e. when: // a. The pump is about to wakeup from idle. // b. The pump is about to enter a nested native loop and a // ScopedNestableTaskAllower was instantiated to allow application // tasks to execute in that nested loop (ScopedNestableTaskAllower // invokes ScheduleWork()). // c. While in a native (nested) loop : HandleWorkMessage() => // ProcessPumpReplacementMessage() invokes ScheduleWork() before // processing a native message to guarantee this pump will get another // time slice if it goes into native Windows code and enters a native // nested loop. This is different from (b.) because we're not yet // processing an application task at the current run level and // therefore are expected to keep pumping application tasks without // necessitating a ScopedNestableTaskAllower. // // * MessagePumpforIO: there's a dummy IO completion item with |this| as an // lpCompletionKey in the queue which is about to wakeup // WaitForIOCompletion(). MessagePumpForIO doesn't support nesting so // this is simpler than MessagePumpForUI. std::atomic_bool work_scheduled_{false}; // State for the current invocation of Run. RunState* state_ = nullptr; THREAD_CHECKER(bound_thread_); }; //----------------------------------------------------------------------------- // MessagePumpForUI extends MessagePumpWin with methods that are particular to a // MessageLoop instantiated with TYPE_UI. // // MessagePumpForUI implements a "traditional" Windows message pump. It contains // a nearly infinite loop that peeks out messages, and then dispatches them. // Intermixed with those peeks are callouts to DoWork. When there are no // events to be serviced, this pump goes into a wait state. In most cases, this // message pump handles all processing. // // However, when a task, or windows event, invokes on the stack a native dialog // box or such, that window typically provides a bare bones (native?) message // pump. That bare-bones message pump generally supports little more than a // peek of the Windows message queue, followed by a dispatch of the peeked // message. MessageLoop extends that bare-bones message pump to also service // Tasks, at the cost of some complexity. // // The basic structure of the extension (referred to as a sub-pump) is that a // special message, kMsgHaveWork, is repeatedly injected into the Windows // Message queue. Each time the kMsgHaveWork message is peeked, checks are made // for an extended set of events, including the availability of Tasks to run. // // After running a task, the special message kMsgHaveWork is again posted to the // Windows Message queue, ensuring a future time slice for processing a future // event. To prevent flooding the Windows Message queue, care is taken to be // sure that at most one kMsgHaveWork message is EVER pending in the Window's // Message queue. // // There are a few additional complexities in this system where, when there are // no Tasks to run, this otherwise infinite stream of messages which drives the // sub-pump is halted. The pump is automatically re-started when Tasks are // queued. // // A second complexity is that the presence of this stream of posted tasks may // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER. // Such paint and timer events always give priority to a posted message, such as // kMsgHaveWork messages. As a result, care is taken to do some peeking in // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork is // peeked, and before a replacement kMsgHaveWork is posted). // // NOTE: Although it may seem odd that messages are used to start and stop this // flow (as opposed to signaling objects, etc.), it should be understood that // the native message pump will *only* respond to messages. As a result, it is // an excellent choice. It is also helpful that the starter messages that are // placed in the queue when new task arrive also awakens DoRunLoop. // class BASE_EXPORT MessagePumpForUI : public MessagePumpWin { public: MessagePumpForUI(); ~MessagePumpForUI() override; // MessagePump methods: void ScheduleWork() override; void ScheduleDelayedWork(const TimeTicks& delayed_work_time) override; // Make the MessagePumpForUI respond to WM_QUIT messages. void EnableWmQuit(); // An observer interface to give the scheduler an opportunity to log // information about MSGs before and after they are dispatched. class BASE_EXPORT Observer { public: virtual void WillDispatchMSG(const MSG& msg) = 0; virtual void DidDispatchMSG(const MSG& msg) = 0; }; void AddObserver(Observer* observer); void RemoveObserver(Observer* obseerver); private: bool MessageCallback(UINT message, WPARAM wparam, LPARAM lparam, LRESULT* result); void DoRunLoop() override; void WaitForWork(Delegate::NextWorkInfo next_work_info); void HandleWorkMessage(); void HandleTimerMessage(); void ScheduleNativeTimer(Delegate::NextWorkInfo next_work_info); void KillNativeTimer(); bool ProcessNextWindowsMessage(); bool ProcessMessageHelper(const MSG& msg); bool ProcessPumpReplacementMessage(); base::win::MessageWindow message_window_; // Whether MessagePumpForUI responds to WM_QUIT messages or not. // TODO(thestig): Remove when the Cloud Print Service goes away. bool enable_wm_quit_ = false; // Non-nullopt if there's currently a native timer installed. If so, it // indicates when the timer is set to fire and can be used to avoid setting // redundant timers. Optional installed_native_timer_; // This will become true when a native loop takes our kMsgHaveWork out of the // system queue. It will be reset to false whenever DoRunLoop regains control. // Used to decide whether ScheduleDelayedWork() should start a native timer. bool in_native_loop_ = false; ObserverList::Unchecked observers_; }; //----------------------------------------------------------------------------- // MessagePumpForIO extends MessagePumpWin with methods that are particular to a // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not // deal with Windows mesagges, and instead has a Run loop based on Completion // Ports so it is better suited for IO operations. // class BASE_EXPORT MessagePumpForIO : public MessagePumpWin { public: struct BASE_EXPORT IOContext { IOContext(); OVERLAPPED overlapped; }; // Clients interested in receiving OS notifications when asynchronous IO // operations complete should implement this interface and register themselves // with the message pump. // // Typical use #1: // class MyFile : public IOHandler { // MyFile() : IOHandler(FROM_HERE) { // ... // message_pump->RegisterIOHandler(file_, this); // } // // Plus some code to make sure that this destructor is not called // // while there are pending IO operations. // ~MyFile() { // } // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, // DWORD error) { // ... // delete context; // } // void DoSomeIo() { // ... // IOContext* context = new IOContext; // ReadFile(file_, buffer, num_bytes, &read, &context); // } // HANDLE file_; // }; // // Typical use #2: // Same as the previous example, except that in order to deal with the // requirement stated for the destructor, the class calls WaitForIOCompletion // from the destructor to block until all IO finishes. // ~MyFile() { // while(pending_) // message_pump->WaitForIOCompletion(INFINITE, this); // } // class BASE_EXPORT IOHandler { public: explicit IOHandler(const Location& from_here); virtual ~IOHandler(); IOHandler(const IOHandler&) = delete; IOHandler& operator=(const IOHandler&) = delete; // This will be called once the pending IO operation associated with // |context| completes. |error| is the Win32 error code of the IO operation // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero // on error. virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, DWORD error) = 0; const Location& io_handler_location() { return io_handler_location_; } private: const Location io_handler_location_; }; MessagePumpForIO(); ~MessagePumpForIO() override; // MessagePump methods: void ScheduleWork() override; void ScheduleDelayedWork(const TimeTicks& delayed_work_time) override; // Register the handler to be used when asynchronous IO for the given file // completes. The registration persists as long as |file_handle| is valid, so // |handler| must be valid as long as there is pending IO for the given file. HRESULT RegisterIOHandler(HANDLE file_handle, IOHandler* handler); // Register the handler to be used to process job events. The registration // persists as long as the job object is live, so |handler| must be valid // until the job object is destroyed. Returns true if the registration // succeeded, and false otherwise. bool RegisterJobObject(HANDLE job_handle, IOHandler* handler); // Waits for the next IO completion that should be processed by |filter|, for // up to |timeout| milliseconds. Return true if any IO operation completed, // regardless of the involved handler, and false if the timeout expired. If // the completion port received any message and the involved IO handler // matches |filter|, the callback is called before returning from this code; // if the handler is not the one that we are looking for, the callback will // be postponed for another time, so reentrancy problems can be avoided. // External use of this method should be reserved for the rare case when the // caller is willing to allow pausing regular task dispatching on this thread. bool WaitForIOCompletion(DWORD timeout, IOHandler* filter); private: struct IOItem { IOHandler* handler; IOContext* context; DWORD bytes_transfered; DWORD error; }; void DoRunLoop() override; void WaitForWork(Delegate::NextWorkInfo next_work_info); bool MatchCompletedIOItem(IOHandler* filter, IOItem* item); bool GetIOItem(DWORD timeout, IOItem* item); bool ProcessInternalIOItem(const IOItem& item); // The completion port associated with this thread. win::ScopedHandle port_; // This list will be empty almost always. It stores IO completions that have // not been delivered yet because somebody was doing cleanup. std::list completed_io_; }; } // namespace base #endif // BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_