1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- // Copyright 2017 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- #ifndef ABSL_RANDOM_INTERNAL_FASTMATH_H_
- #define ABSL_RANDOM_INTERNAL_FASTMATH_H_
- // This file contains fast math functions (bitwise ops as well as some others)
- // which are implementation details of various absl random number distributions.
- #include <cassert>
- #include <cmath>
- #include <cstdint>
- #include "absl/base/internal/bits.h"
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace random_internal {
- // Returns the position of the first bit set.
- inline int LeadingSetBit(uint64_t n) {
- return 64 - base_internal::CountLeadingZeros64(n);
- }
- // Compute log2(n) using integer operations.
- // While std::log2 is more accurate than std::log(n) / std::log(2), for
- // very large numbers--those close to std::numeric_limits<uint64_t>::max() - 2,
- // for instance--std::log2 rounds up rather than down, which introduces
- // definite skew in the results.
- inline int IntLog2Floor(uint64_t n) {
- return (n <= 1) ? 0 : (63 - base_internal::CountLeadingZeros64(n));
- }
- inline int IntLog2Ceil(uint64_t n) {
- return (n <= 1) ? 0 : (64 - base_internal::CountLeadingZeros64(n - 1));
- }
- inline double StirlingLogFactorial(double n) {
- assert(n >= 1);
- // Using Stirling's approximation.
- constexpr double kLog2PI = 1.83787706640934548356;
- const double logn = std::log(n);
- const double ninv = 1.0 / static_cast<double>(n);
- return n * logn - n + 0.5 * (kLog2PI + logn) + (1.0 / 12.0) * ninv -
- (1.0 / 360.0) * ninv * ninv * ninv;
- }
- // Rotate value right.
- //
- // We only implement the uint32_t / uint64_t versions because
- // 1) those are the only ones we use, and
- // 2) those are the only ones where clang detects the rotate idiom correctly.
- inline constexpr uint32_t rotr(uint32_t value, uint8_t bits) {
- return (value >> (bits & 31)) | (value << ((-bits) & 31));
- }
- inline constexpr uint64_t rotr(uint64_t value, uint8_t bits) {
- return (value >> (bits & 63)) | (value << ((-bits) & 63));
- }
- } // namespace random_internal
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_RANDOM_INTERNAL_FASTMATH_H_
|