fastmath.h 2.5 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. // Copyright 2017 The Abseil Authors.
  2. //
  3. // Licensed under the Apache License, Version 2.0 (the "License");
  4. // you may not use this file except in compliance with the License.
  5. // You may obtain a copy of the License at
  6. //
  7. // https://www.apache.org/licenses/LICENSE-2.0
  8. //
  9. // Unless required by applicable law or agreed to in writing, software
  10. // distributed under the License is distributed on an "AS IS" BASIS,
  11. // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. // See the License for the specific language governing permissions and
  13. // limitations under the License.
  14. #ifndef ABSL_RANDOM_INTERNAL_FASTMATH_H_
  15. #define ABSL_RANDOM_INTERNAL_FASTMATH_H_
  16. // This file contains fast math functions (bitwise ops as well as some others)
  17. // which are implementation details of various absl random number distributions.
  18. #include <cassert>
  19. #include <cmath>
  20. #include <cstdint>
  21. #include "absl/base/internal/bits.h"
  22. namespace absl {
  23. ABSL_NAMESPACE_BEGIN
  24. namespace random_internal {
  25. // Returns the position of the first bit set.
  26. inline int LeadingSetBit(uint64_t n) {
  27. return 64 - base_internal::CountLeadingZeros64(n);
  28. }
  29. // Compute log2(n) using integer operations.
  30. // While std::log2 is more accurate than std::log(n) / std::log(2), for
  31. // very large numbers--those close to std::numeric_limits<uint64_t>::max() - 2,
  32. // for instance--std::log2 rounds up rather than down, which introduces
  33. // definite skew in the results.
  34. inline int IntLog2Floor(uint64_t n) {
  35. return (n <= 1) ? 0 : (63 - base_internal::CountLeadingZeros64(n));
  36. }
  37. inline int IntLog2Ceil(uint64_t n) {
  38. return (n <= 1) ? 0 : (64 - base_internal::CountLeadingZeros64(n - 1));
  39. }
  40. inline double StirlingLogFactorial(double n) {
  41. assert(n >= 1);
  42. // Using Stirling's approximation.
  43. constexpr double kLog2PI = 1.83787706640934548356;
  44. const double logn = std::log(n);
  45. const double ninv = 1.0 / static_cast<double>(n);
  46. return n * logn - n + 0.5 * (kLog2PI + logn) + (1.0 / 12.0) * ninv -
  47. (1.0 / 360.0) * ninv * ninv * ninv;
  48. }
  49. // Rotate value right.
  50. //
  51. // We only implement the uint32_t / uint64_t versions because
  52. // 1) those are the only ones we use, and
  53. // 2) those are the only ones where clang detects the rotate idiom correctly.
  54. inline constexpr uint32_t rotr(uint32_t value, uint8_t bits) {
  55. return (value >> (bits & 31)) | (value << ((-bits) & 31));
  56. }
  57. inline constexpr uint64_t rotr(uint64_t value, uint8_t bits) {
  58. return (value >> (bits & 63)) | (value << ((-bits) & 63));
  59. }
  60. } // namespace random_internal
  61. ABSL_NAMESPACE_END
  62. } // namespace absl
  63. #endif // ABSL_RANDOM_INTERNAL_FASTMATH_H_