12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624 |
- // Copyright 2018 The Abseil Authors.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // https://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // A btree implementation of the STL set and map interfaces. A btree is smaller
- // and generally also faster than STL set/map (refer to the benchmarks below).
- // The red-black tree implementation of STL set/map has an overhead of 3
- // pointers (left, right and parent) plus the node color information for each
- // stored value. So a set<int32_t> consumes 40 bytes for each value stored in
- // 64-bit mode. This btree implementation stores multiple values on fixed
- // size nodes (usually 256 bytes) and doesn't store child pointers for leaf
- // nodes. The result is that a btree_set<int32_t> may use much less memory per
- // stored value. For the random insertion benchmark in btree_bench.cc, a
- // btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value.
- //
- // The packing of multiple values on to each node of a btree has another effect
- // besides better space utilization: better cache locality due to fewer cache
- // lines being accessed. Better cache locality translates into faster
- // operations.
- //
- // CAVEATS
- //
- // Insertions and deletions on a btree can cause splitting, merging or
- // rebalancing of btree nodes. And even without these operations, insertions
- // and deletions on a btree will move values around within a node. In both
- // cases, the result is that insertions and deletions can invalidate iterators
- // pointing to values other than the one being inserted/deleted. Therefore, this
- // container does not provide pointer stability. This is notably different from
- // STL set/map which takes care to not invalidate iterators on insert/erase
- // except, of course, for iterators pointing to the value being erased. A
- // partial workaround when erasing is available: erase() returns an iterator
- // pointing to the item just after the one that was erased (or end() if none
- // exists).
- #ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_
- #define ABSL_CONTAINER_INTERNAL_BTREE_H_
- #include <algorithm>
- #include <cassert>
- #include <cstddef>
- #include <cstdint>
- #include <cstring>
- #include <functional>
- #include <iterator>
- #include <limits>
- #include <new>
- #include <string>
- #include <type_traits>
- #include <utility>
- #include "absl/base/macros.h"
- #include "absl/container/internal/common.h"
- #include "absl/container/internal/compressed_tuple.h"
- #include "absl/container/internal/container_memory.h"
- #include "absl/container/internal/layout.h"
- #include "absl/memory/memory.h"
- #include "absl/meta/type_traits.h"
- #include "absl/strings/cord.h"
- #include "absl/strings/string_view.h"
- #include "absl/types/compare.h"
- #include "absl/utility/utility.h"
- namespace absl {
- ABSL_NAMESPACE_BEGIN
- namespace container_internal {
- // A helper class that indicates if the Compare parameter is a key-compare-to
- // comparator.
- template <typename Compare, typename T>
- using btree_is_key_compare_to =
- std::is_convertible<absl::result_of_t<Compare(const T &, const T &)>,
- absl::weak_ordering>;
- struct StringBtreeDefaultLess {
- using is_transparent = void;
- StringBtreeDefaultLess() = default;
- // Compatibility constructor.
- StringBtreeDefaultLess(std::less<std::string>) {} // NOLINT
- StringBtreeDefaultLess(std::less<string_view>) {} // NOLINT
- absl::weak_ordering operator()(absl::string_view lhs,
- absl::string_view rhs) const {
- return compare_internal::compare_result_as_ordering(lhs.compare(rhs));
- }
- StringBtreeDefaultLess(std::less<absl::Cord>) {} // NOLINT
- absl::weak_ordering operator()(const absl::Cord &lhs,
- const absl::Cord &rhs) const {
- return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
- }
- absl::weak_ordering operator()(const absl::Cord &lhs,
- absl::string_view rhs) const {
- return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
- }
- absl::weak_ordering operator()(absl::string_view lhs,
- const absl::Cord &rhs) const {
- return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs));
- }
- };
- struct StringBtreeDefaultGreater {
- using is_transparent = void;
- StringBtreeDefaultGreater() = default;
- StringBtreeDefaultGreater(std::greater<std::string>) {} // NOLINT
- StringBtreeDefaultGreater(std::greater<string_view>) {} // NOLINT
- absl::weak_ordering operator()(absl::string_view lhs,
- absl::string_view rhs) const {
- return compare_internal::compare_result_as_ordering(rhs.compare(lhs));
- }
- StringBtreeDefaultGreater(std::greater<absl::Cord>) {} // NOLINT
- absl::weak_ordering operator()(const absl::Cord &lhs,
- const absl::Cord &rhs) const {
- return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
- }
- absl::weak_ordering operator()(const absl::Cord &lhs,
- absl::string_view rhs) const {
- return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs));
- }
- absl::weak_ordering operator()(absl::string_view lhs,
- const absl::Cord &rhs) const {
- return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
- }
- };
- // A helper class to convert a boolean comparison into a three-way "compare-to"
- // comparison that returns an `absl::weak_ordering`. This helper
- // class is specialized for less<std::string>, greater<std::string>,
- // less<string_view>, greater<string_view>, less<absl::Cord>, and
- // greater<absl::Cord>.
- //
- // key_compare_to_adapter is provided so that btree users
- // automatically get the more efficient compare-to code when using common
- // Abseil string types with common comparison functors.
- // These string-like specializations also turn on heterogeneous lookup by
- // default.
- template <typename Compare>
- struct key_compare_to_adapter {
- using type = Compare;
- };
- template <>
- struct key_compare_to_adapter<std::less<std::string>> {
- using type = StringBtreeDefaultLess;
- };
- template <>
- struct key_compare_to_adapter<std::greater<std::string>> {
- using type = StringBtreeDefaultGreater;
- };
- template <>
- struct key_compare_to_adapter<std::less<absl::string_view>> {
- using type = StringBtreeDefaultLess;
- };
- template <>
- struct key_compare_to_adapter<std::greater<absl::string_view>> {
- using type = StringBtreeDefaultGreater;
- };
- template <>
- struct key_compare_to_adapter<std::less<absl::Cord>> {
- using type = StringBtreeDefaultLess;
- };
- template <>
- struct key_compare_to_adapter<std::greater<absl::Cord>> {
- using type = StringBtreeDefaultGreater;
- };
- template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
- bool Multi, typename SlotPolicy>
- struct common_params {
- // If Compare is a common comparator for a string-like type, then we adapt it
- // to use heterogeneous lookup and to be a key-compare-to comparator.
- using key_compare = typename key_compare_to_adapter<Compare>::type;
- // True when key_compare has been adapted to StringBtreeDefault{Less,Greater}.
- using is_key_compare_adapted =
- absl::negation<std::is_same<key_compare, Compare>>;
- // A type which indicates if we have a key-compare-to functor or a plain old
- // key-compare functor.
- using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>;
- using allocator_type = Alloc;
- using key_type = Key;
- using size_type = std::make_signed<size_t>::type;
- using difference_type = ptrdiff_t;
- // True if this is a multiset or multimap.
- using is_multi_container = std::integral_constant<bool, Multi>;
- using slot_policy = SlotPolicy;
- using slot_type = typename slot_policy::slot_type;
- using value_type = typename slot_policy::value_type;
- using init_type = typename slot_policy::mutable_value_type;
- using pointer = value_type *;
- using const_pointer = const value_type *;
- using reference = value_type &;
- using const_reference = const value_type &;
- enum {
- kTargetNodeSize = TargetNodeSize,
- // Upper bound for the available space for values. This is largest for leaf
- // nodes, which have overhead of at least a pointer + 4 bytes (for storing
- // 3 field_types and an enum).
- kNodeValueSpace =
- TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4),
- };
- // This is an integral type large enough to hold as many
- // ValueSize-values as will fit a node of TargetNodeSize bytes.
- using node_count_type =
- absl::conditional_t<(kNodeValueSpace / sizeof(value_type) >
- (std::numeric_limits<uint8_t>::max)()),
- uint16_t, uint8_t>; // NOLINT
- // The following methods are necessary for passing this struct as PolicyTraits
- // for node_handle and/or are used within btree.
- static value_type &element(slot_type *slot) {
- return slot_policy::element(slot);
- }
- static const value_type &element(const slot_type *slot) {
- return slot_policy::element(slot);
- }
- template <class... Args>
- static void construct(Alloc *alloc, slot_type *slot, Args &&... args) {
- slot_policy::construct(alloc, slot, std::forward<Args>(args)...);
- }
- static void construct(Alloc *alloc, slot_type *slot, slot_type *other) {
- slot_policy::construct(alloc, slot, other);
- }
- static void destroy(Alloc *alloc, slot_type *slot) {
- slot_policy::destroy(alloc, slot);
- }
- static void transfer(Alloc *alloc, slot_type *new_slot, slot_type *old_slot) {
- construct(alloc, new_slot, old_slot);
- destroy(alloc, old_slot);
- }
- static void swap(Alloc *alloc, slot_type *a, slot_type *b) {
- slot_policy::swap(alloc, a, b);
- }
- static void move(Alloc *alloc, slot_type *src, slot_type *dest) {
- slot_policy::move(alloc, src, dest);
- }
- };
- // A parameters structure for holding the type parameters for a btree_map.
- // Compare and Alloc should be nothrow copy-constructible.
- template <typename Key, typename Data, typename Compare, typename Alloc,
- int TargetNodeSize, bool Multi>
- struct map_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
- map_slot_policy<Key, Data>> {
- using super_type = typename map_params::common_params;
- using mapped_type = Data;
- // This type allows us to move keys when it is safe to do so. It is safe
- // for maps in which value_type and mutable_value_type are layout compatible.
- using slot_policy = typename super_type::slot_policy;
- using slot_type = typename super_type::slot_type;
- using value_type = typename super_type::value_type;
- using init_type = typename super_type::init_type;
- using key_compare = typename super_type::key_compare;
- // Inherit from key_compare for empty base class optimization.
- struct value_compare : private key_compare {
- value_compare() = default;
- explicit value_compare(const key_compare &cmp) : key_compare(cmp) {}
- template <typename T, typename U>
- auto operator()(const T &left, const U &right) const
- -> decltype(std::declval<key_compare>()(left.first, right.first)) {
- return key_compare::operator()(left.first, right.first);
- }
- };
- using is_map_container = std::true_type;
- template <typename V>
- static auto key(const V &value) -> decltype(value.first) {
- return value.first;
- }
- static const Key &key(const slot_type *s) { return slot_policy::key(s); }
- static const Key &key(slot_type *s) { return slot_policy::key(s); }
- // For use in node handle.
- static auto mutable_key(slot_type *s)
- -> decltype(slot_policy::mutable_key(s)) {
- return slot_policy::mutable_key(s);
- }
- static mapped_type &value(value_type *value) { return value->second; }
- };
- // This type implements the necessary functions from the
- // absl::container_internal::slot_type interface.
- template <typename Key>
- struct set_slot_policy {
- using slot_type = Key;
- using value_type = Key;
- using mutable_value_type = Key;
- static value_type &element(slot_type *slot) { return *slot; }
- static const value_type &element(const slot_type *slot) { return *slot; }
- template <typename Alloc, class... Args>
- static void construct(Alloc *alloc, slot_type *slot, Args &&... args) {
- absl::allocator_traits<Alloc>::construct(*alloc, slot,
- std::forward<Args>(args)...);
- }
- template <typename Alloc>
- static void construct(Alloc *alloc, slot_type *slot, slot_type *other) {
- absl::allocator_traits<Alloc>::construct(*alloc, slot, std::move(*other));
- }
- template <typename Alloc>
- static void destroy(Alloc *alloc, slot_type *slot) {
- absl::allocator_traits<Alloc>::destroy(*alloc, slot);
- }
- template <typename Alloc>
- static void swap(Alloc * /*alloc*/, slot_type *a, slot_type *b) {
- using std::swap;
- swap(*a, *b);
- }
- template <typename Alloc>
- static void move(Alloc * /*alloc*/, slot_type *src, slot_type *dest) {
- *dest = std::move(*src);
- }
- };
- // A parameters structure for holding the type parameters for a btree_set.
- // Compare and Alloc should be nothrow copy-constructible.
- template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
- bool Multi>
- struct set_params : common_params<Key, Compare, Alloc, TargetNodeSize, Multi,
- set_slot_policy<Key>> {
- using value_type = Key;
- using slot_type = typename set_params::common_params::slot_type;
- using value_compare = typename set_params::common_params::key_compare;
- using is_map_container = std::false_type;
- template <typename V>
- static const V &key(const V &value) { return value; }
- static const Key &key(const slot_type *slot) { return *slot; }
- static const Key &key(slot_type *slot) { return *slot; }
- };
- // An adapter class that converts a lower-bound compare into an upper-bound
- // compare. Note: there is no need to make a version of this adapter specialized
- // for key-compare-to functors because the upper-bound (the first value greater
- // than the input) is never an exact match.
- template <typename Compare>
- struct upper_bound_adapter {
- explicit upper_bound_adapter(const Compare &c) : comp(c) {}
- template <typename K1, typename K2>
- bool operator()(const K1 &a, const K2 &b) const {
- // Returns true when a is not greater than b.
- return !compare_internal::compare_result_as_less_than(comp(b, a));
- }
- private:
- Compare comp;
- };
- enum class MatchKind : uint8_t { kEq, kNe };
- template <typename V, bool IsCompareTo>
- struct SearchResult {
- V value;
- MatchKind match;
- static constexpr bool HasMatch() { return true; }
- bool IsEq() const { return match == MatchKind::kEq; }
- };
- // When we don't use CompareTo, `match` is not present.
- // This ensures that callers can't use it accidentally when it provides no
- // useful information.
- template <typename V>
- struct SearchResult<V, false> {
- V value;
- static constexpr bool HasMatch() { return false; }
- static constexpr bool IsEq() { return false; }
- };
- // A node in the btree holding. The same node type is used for both internal
- // and leaf nodes in the btree, though the nodes are allocated in such a way
- // that the children array is only valid in internal nodes.
- template <typename Params>
- class btree_node {
- using is_key_compare_to = typename Params::is_key_compare_to;
- using is_multi_container = typename Params::is_multi_container;
- using field_type = typename Params::node_count_type;
- using allocator_type = typename Params::allocator_type;
- using slot_type = typename Params::slot_type;
- public:
- using params_type = Params;
- using key_type = typename Params::key_type;
- using value_type = typename Params::value_type;
- using pointer = typename Params::pointer;
- using const_pointer = typename Params::const_pointer;
- using reference = typename Params::reference;
- using const_reference = typename Params::const_reference;
- using key_compare = typename Params::key_compare;
- using size_type = typename Params::size_type;
- using difference_type = typename Params::difference_type;
- // Btree decides whether to use linear node search as follows:
- // - If the key is arithmetic and the comparator is std::less or
- // std::greater, choose linear.
- // - Otherwise, choose binary.
- // TODO(ezb): Might make sense to add condition(s) based on node-size.
- using use_linear_search = std::integral_constant<
- bool,
- std::is_arithmetic<key_type>::value &&
- (std::is_same<std::less<key_type>, key_compare>::value ||
- std::is_same<std::greater<key_type>, key_compare>::value)>;
- // This class is organized by gtl::Layout as if it had the following
- // structure:
- // // A pointer to the node's parent.
- // btree_node *parent;
- //
- // // The position of the node in the node's parent.
- // field_type position;
- // // The index of the first populated value in `values`.
- // // TODO(ezb): right now, `start` is always 0. Update insertion/merge
- // // logic to allow for floating storage within nodes.
- // field_type start;
- // // The index after the last populated value in `values`. Currently, this
- // // is the same as the count of values.
- // field_type finish;
- // // The maximum number of values the node can hold. This is an integer in
- // // [1, kNodeValues] for root leaf nodes, kNodeValues for non-root leaf
- // // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal
- // // nodes (even though there are still kNodeValues values in the node).
- // // TODO(ezb): make max_count use only 4 bits and record log2(capacity)
- // // to free extra bits for is_root, etc.
- // field_type max_count;
- //
- // // The array of values. The capacity is `max_count` for leaf nodes and
- // // kNodeValues for internal nodes. Only the values in
- // // [start, finish) have been initialized and are valid.
- // slot_type values[max_count];
- //
- // // The array of child pointers. The keys in children[i] are all less
- // // than key(i). The keys in children[i + 1] are all greater than key(i).
- // // There are 0 children for leaf nodes and kNodeValues + 1 children for
- // // internal nodes.
- // btree_node *children[kNodeValues + 1];
- //
- // This class is only constructed by EmptyNodeType. Normally, pointers to the
- // layout above are allocated, cast to btree_node*, and de-allocated within
- // the btree implementation.
- ~btree_node() = default;
- btree_node(btree_node const &) = delete;
- btree_node &operator=(btree_node const &) = delete;
- // Public for EmptyNodeType.
- constexpr static size_type Alignment() {
- static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(),
- "Alignment of all nodes must be equal.");
- return InternalLayout().Alignment();
- }
- protected:
- btree_node() = default;
- private:
- using layout_type = absl::container_internal::Layout<btree_node *, field_type,
- slot_type, btree_node *>;
- constexpr static size_type SizeWithNValues(size_type n) {
- return layout_type(/*parent*/ 1,
- /*position, start, finish, max_count*/ 4,
- /*values*/ n,
- /*children*/ 0)
- .AllocSize();
- }
- // A lower bound for the overhead of fields other than values in a leaf node.
- constexpr static size_type MinimumOverhead() {
- return SizeWithNValues(1) - sizeof(value_type);
- }
- // Compute how many values we can fit onto a leaf node taking into account
- // padding.
- constexpr static size_type NodeTargetValues(const int begin, const int end) {
- return begin == end ? begin
- : SizeWithNValues((begin + end) / 2 + 1) >
- params_type::kTargetNodeSize
- ? NodeTargetValues(begin, (begin + end) / 2)
- : NodeTargetValues((begin + end) / 2 + 1, end);
- }
- enum {
- kTargetNodeSize = params_type::kTargetNodeSize,
- kNodeTargetValues = NodeTargetValues(0, params_type::kTargetNodeSize),
- // We need a minimum of 3 values per internal node in order to perform
- // splitting (1 value for the two nodes involved in the split and 1 value
- // propagated to the parent as the delimiter for the split).
- kNodeValues = kNodeTargetValues >= 3 ? kNodeTargetValues : 3,
- // The node is internal (i.e. is not a leaf node) if and only if `max_count`
- // has this value.
- kInternalNodeMaxCount = 0,
- };
- // Leaves can have less than kNodeValues values.
- constexpr static layout_type LeafLayout(const int max_values = kNodeValues) {
- return layout_type(/*parent*/ 1,
- /*position, start, finish, max_count*/ 4,
- /*values*/ max_values,
- /*children*/ 0);
- }
- constexpr static layout_type InternalLayout() {
- return layout_type(/*parent*/ 1,
- /*position, start, finish, max_count*/ 4,
- /*values*/ kNodeValues,
- /*children*/ kNodeValues + 1);
- }
- constexpr static size_type LeafSize(const int max_values = kNodeValues) {
- return LeafLayout(max_values).AllocSize();
- }
- constexpr static size_type InternalSize() {
- return InternalLayout().AllocSize();
- }
- // N is the index of the type in the Layout definition.
- // ElementType<N> is the Nth type in the Layout definition.
- template <size_type N>
- inline typename layout_type::template ElementType<N> *GetField() {
- // We assert that we don't read from values that aren't there.
- assert(N < 3 || !leaf());
- return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this));
- }
- template <size_type N>
- inline const typename layout_type::template ElementType<N> *GetField() const {
- assert(N < 3 || !leaf());
- return InternalLayout().template Pointer<N>(
- reinterpret_cast<const char *>(this));
- }
- void set_parent(btree_node *p) { *GetField<0>() = p; }
- field_type &mutable_finish() { return GetField<1>()[2]; }
- slot_type *slot(int i) { return &GetField<2>()[i]; }
- slot_type *start_slot() { return slot(start()); }
- slot_type *finish_slot() { return slot(finish()); }
- const slot_type *slot(int i) const { return &GetField<2>()[i]; }
- void set_position(field_type v) { GetField<1>()[0] = v; }
- void set_start(field_type v) { GetField<1>()[1] = v; }
- void set_finish(field_type v) { GetField<1>()[2] = v; }
- // This method is only called by the node init methods.
- void set_max_count(field_type v) { GetField<1>()[3] = v; }
- public:
- // Whether this is a leaf node or not. This value doesn't change after the
- // node is created.
- bool leaf() const { return GetField<1>()[3] != kInternalNodeMaxCount; }
- // Getter for the position of this node in its parent.
- field_type position() const { return GetField<1>()[0]; }
- // Getter for the offset of the first value in the `values` array.
- field_type start() const {
- // TODO(ezb): when floating storage is implemented, return GetField<1>()[1];
- assert(GetField<1>()[1] == 0);
- return 0;
- }
- // Getter for the offset after the last value in the `values` array.
- field_type finish() const { return GetField<1>()[2]; }
- // Getters for the number of values stored in this node.
- field_type count() const {
- assert(finish() >= start());
- return finish() - start();
- }
- field_type max_count() const {
- // Internal nodes have max_count==kInternalNodeMaxCount.
- // Leaf nodes have max_count in [1, kNodeValues].
- const field_type max_count = GetField<1>()[3];
- return max_count == field_type{kInternalNodeMaxCount}
- ? field_type{kNodeValues}
- : max_count;
- }
- // Getter for the parent of this node.
- btree_node *parent() const { return *GetField<0>(); }
- // Getter for whether the node is the root of the tree. The parent of the
- // root of the tree is the leftmost node in the tree which is guaranteed to
- // be a leaf.
- bool is_root() const { return parent()->leaf(); }
- void make_root() {
- assert(parent()->is_root());
- set_parent(parent()->parent());
- }
- // Getters for the key/value at position i in the node.
- const key_type &key(int i) const { return params_type::key(slot(i)); }
- reference value(int i) { return params_type::element(slot(i)); }
- const_reference value(int i) const { return params_type::element(slot(i)); }
- // Getters/setter for the child at position i in the node.
- btree_node *child(int i) const { return GetField<3>()[i]; }
- btree_node *start_child() const { return child(start()); }
- btree_node *&mutable_child(int i) { return GetField<3>()[i]; }
- void clear_child(int i) {
- absl::container_internal::SanitizerPoisonObject(&mutable_child(i));
- }
- void set_child(int i, btree_node *c) {
- absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i));
- mutable_child(i) = c;
- c->set_position(i);
- }
- void init_child(int i, btree_node *c) {
- set_child(i, c);
- c->set_parent(this);
- }
- // Returns the position of the first value whose key is not less than k.
- template <typename K>
- SearchResult<int, is_key_compare_to::value> lower_bound(
- const K &k, const key_compare &comp) const {
- return use_linear_search::value ? linear_search(k, comp)
- : binary_search(k, comp);
- }
- // Returns the position of the first value whose key is greater than k.
- template <typename K>
- int upper_bound(const K &k, const key_compare &comp) const {
- auto upper_compare = upper_bound_adapter<key_compare>(comp);
- return use_linear_search::value ? linear_search(k, upper_compare).value
- : binary_search(k, upper_compare).value;
- }
- template <typename K, typename Compare>
- SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
- linear_search(const K &k, const Compare &comp) const {
- return linear_search_impl(k, start(), finish(), comp,
- btree_is_key_compare_to<Compare, key_type>());
- }
- template <typename K, typename Compare>
- SearchResult<int, btree_is_key_compare_to<Compare, key_type>::value>
- binary_search(const K &k, const Compare &comp) const {
- return binary_search_impl(k, start(), finish(), comp,
- btree_is_key_compare_to<Compare, key_type>());
- }
- // Returns the position of the first value whose key is not less than k using
- // linear search performed using plain compare.
- template <typename K, typename Compare>
- SearchResult<int, false> linear_search_impl(
- const K &k, int s, const int e, const Compare &comp,
- std::false_type /* IsCompareTo */) const {
- while (s < e) {
- if (!comp(key(s), k)) {
- break;
- }
- ++s;
- }
- return {s};
- }
- // Returns the position of the first value whose key is not less than k using
- // linear search performed using compare-to.
- template <typename K, typename Compare>
- SearchResult<int, true> linear_search_impl(
- const K &k, int s, const int e, const Compare &comp,
- std::true_type /* IsCompareTo */) const {
- while (s < e) {
- const absl::weak_ordering c = comp(key(s), k);
- if (c == 0) {
- return {s, MatchKind::kEq};
- } else if (c > 0) {
- break;
- }
- ++s;
- }
- return {s, MatchKind::kNe};
- }
- // Returns the position of the first value whose key is not less than k using
- // binary search performed using plain compare.
- template <typename K, typename Compare>
- SearchResult<int, false> binary_search_impl(
- const K &k, int s, int e, const Compare &comp,
- std::false_type /* IsCompareTo */) const {
- while (s != e) {
- const int mid = (s + e) >> 1;
- if (comp(key(mid), k)) {
- s = mid + 1;
- } else {
- e = mid;
- }
- }
- return {s};
- }
- // Returns the position of the first value whose key is not less than k using
- // binary search performed using compare-to.
- template <typename K, typename CompareTo>
- SearchResult<int, true> binary_search_impl(
- const K &k, int s, int e, const CompareTo &comp,
- std::true_type /* IsCompareTo */) const {
- if (is_multi_container::value) {
- MatchKind exact_match = MatchKind::kNe;
- while (s != e) {
- const int mid = (s + e) >> 1;
- const absl::weak_ordering c = comp(key(mid), k);
- if (c < 0) {
- s = mid + 1;
- } else {
- e = mid;
- if (c == 0) {
- // Need to return the first value whose key is not less than k,
- // which requires continuing the binary search if this is a
- // multi-container.
- exact_match = MatchKind::kEq;
- }
- }
- }
- return {s, exact_match};
- } else { // Not a multi-container.
- while (s != e) {
- const int mid = (s + e) >> 1;
- const absl::weak_ordering c = comp(key(mid), k);
- if (c < 0) {
- s = mid + 1;
- } else if (c > 0) {
- e = mid;
- } else {
- return {mid, MatchKind::kEq};
- }
- }
- return {s, MatchKind::kNe};
- }
- }
- // Emplaces a value at position i, shifting all existing values and
- // children at positions >= i to the right by 1.
- template <typename... Args>
- void emplace_value(size_type i, allocator_type *alloc, Args &&... args);
- // Removes the values at positions [i, i + to_erase), shifting all existing
- // values and children after that range to the left by to_erase. Clears all
- // children between [i, i + to_erase).
- void remove_values(field_type i, field_type to_erase, allocator_type *alloc);
- // Rebalances a node with its right sibling.
- void rebalance_right_to_left(int to_move, btree_node *right,
- allocator_type *alloc);
- void rebalance_left_to_right(int to_move, btree_node *right,
- allocator_type *alloc);
- // Splits a node, moving a portion of the node's values to its right sibling.
- void split(int insert_position, btree_node *dest, allocator_type *alloc);
- // Merges a node with its right sibling, moving all of the values and the
- // delimiting key in the parent node onto itself, and deleting the src node.
- void merge(btree_node *src, allocator_type *alloc);
- // Node allocation/deletion routines.
- void init_leaf(btree_node *parent, int max_count) {
- set_parent(parent);
- set_position(0);
- set_start(0);
- set_finish(0);
- set_max_count(max_count);
- absl::container_internal::SanitizerPoisonMemoryRegion(
- start_slot(), max_count * sizeof(slot_type));
- }
- void init_internal(btree_node *parent) {
- init_leaf(parent, kNodeValues);
- // Set `max_count` to a sentinel value to indicate that this node is
- // internal.
- set_max_count(kInternalNodeMaxCount);
- absl::container_internal::SanitizerPoisonMemoryRegion(
- &mutable_child(start()), (kNodeValues + 1) * sizeof(btree_node *));
- }
- static void deallocate(const size_type size, btree_node *node,
- allocator_type *alloc) {
- absl::container_internal::Deallocate<Alignment()>(alloc, node, size);
- }
- // Deletes a node and all of its children.
- static void clear_and_delete(btree_node *node, allocator_type *alloc);
- public:
- // Exposed only for tests.
- static bool testonly_uses_linear_node_search() {
- return use_linear_search::value;
- }
- private:
- template <typename... Args>
- void value_init(const field_type i, allocator_type *alloc, Args &&... args) {
- absl::container_internal::SanitizerUnpoisonObject(slot(i));
- params_type::construct(alloc, slot(i), std::forward<Args>(args)...);
- }
- void value_destroy(const field_type i, allocator_type *alloc) {
- params_type::destroy(alloc, slot(i));
- absl::container_internal::SanitizerPoisonObject(slot(i));
- }
- void value_destroy_n(const field_type i, const field_type n,
- allocator_type *alloc) {
- for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) {
- params_type::destroy(alloc, s);
- absl::container_internal::SanitizerPoisonObject(s);
- }
- }
- static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) {
- absl::container_internal::SanitizerUnpoisonObject(dest);
- params_type::transfer(alloc, dest, src);
- absl::container_internal::SanitizerPoisonObject(src);
- }
- // Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`.
- void transfer(const size_type dest_i, const size_type src_i,
- btree_node *src_node, allocator_type *alloc) {
- transfer(slot(dest_i), src_node->slot(src_i), alloc);
- }
- // Transfers `n` values starting at value `src_i` in `src_node` into the
- // values starting at value `dest_i` in `this`.
- void transfer_n(const size_type n, const size_type dest_i,
- const size_type src_i, btree_node *src_node,
- allocator_type *alloc) {
- for (slot_type *src = src_node->slot(src_i), *end = src + n,
- *dest = slot(dest_i);
- src != end; ++src, ++dest) {
- transfer(dest, src, alloc);
- }
- }
- // Same as above, except that we start at the end and work our way to the
- // beginning.
- void transfer_n_backward(const size_type n, const size_type dest_i,
- const size_type src_i, btree_node *src_node,
- allocator_type *alloc) {
- for (slot_type *src = src_node->slot(src_i + n - 1), *end = src - n,
- *dest = slot(dest_i + n - 1);
- src != end; --src, --dest) {
- transfer(dest, src, alloc);
- }
- }
- template <typename P>
- friend class btree;
- template <typename N, typename R, typename P>
- friend struct btree_iterator;
- friend class BtreeNodePeer;
- };
- template <typename Node, typename Reference, typename Pointer>
- struct btree_iterator {
- private:
- using key_type = typename Node::key_type;
- using size_type = typename Node::size_type;
- using params_type = typename Node::params_type;
- using node_type = Node;
- using normal_node = typename std::remove_const<Node>::type;
- using const_node = const Node;
- using normal_pointer = typename params_type::pointer;
- using normal_reference = typename params_type::reference;
- using const_pointer = typename params_type::const_pointer;
- using const_reference = typename params_type::const_reference;
- using slot_type = typename params_type::slot_type;
- using iterator =
- btree_iterator<normal_node, normal_reference, normal_pointer>;
- using const_iterator =
- btree_iterator<const_node, const_reference, const_pointer>;
- public:
- // These aliases are public for std::iterator_traits.
- using difference_type = typename Node::difference_type;
- using value_type = typename params_type::value_type;
- using pointer = Pointer;
- using reference = Reference;
- using iterator_category = std::bidirectional_iterator_tag;
- btree_iterator() : node(nullptr), position(-1) {}
- explicit btree_iterator(Node *n) : node(n), position(n->start()) {}
- btree_iterator(Node *n, int p) : node(n), position(p) {}
- // NOTE: this SFINAE allows for implicit conversions from iterator to
- // const_iterator, but it specifically avoids defining copy constructors so
- // that btree_iterator can be trivially copyable. This is for performance and
- // binary size reasons.
- template <typename N, typename R, typename P,
- absl::enable_if_t<
- std::is_same<btree_iterator<N, R, P>, iterator>::value &&
- std::is_same<btree_iterator, const_iterator>::value,
- int> = 0>
- btree_iterator(const btree_iterator<N, R, P> &other) // NOLINT
- : node(other.node), position(other.position) {}
- private:
- // This SFINAE allows explicit conversions from const_iterator to
- // iterator, but also avoids defining a copy constructor.
- // NOTE: the const_cast is safe because this constructor is only called by
- // non-const methods and the container owns the nodes.
- template <typename N, typename R, typename P,
- absl::enable_if_t<
- std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
- std::is_same<btree_iterator, iterator>::value,
- int> = 0>
- explicit btree_iterator(const btree_iterator<N, R, P> &other)
- : node(const_cast<node_type *>(other.node)), position(other.position) {}
- // Increment/decrement the iterator.
- void increment() {
- if (node->leaf() && ++position < node->finish()) {
- return;
- }
- increment_slow();
- }
- void increment_slow();
- void decrement() {
- if (node->leaf() && --position >= node->start()) {
- return;
- }
- decrement_slow();
- }
- void decrement_slow();
- public:
- bool operator==(const iterator &other) const {
- return node == other.node && position == other.position;
- }
- bool operator==(const const_iterator &other) const {
- return node == other.node && position == other.position;
- }
- bool operator!=(const iterator &other) const {
- return node != other.node || position != other.position;
- }
- bool operator!=(const const_iterator &other) const {
- return node != other.node || position != other.position;
- }
- // Accessors for the key/value the iterator is pointing at.
- reference operator*() const {
- ABSL_HARDENING_ASSERT(node != nullptr);
- ABSL_HARDENING_ASSERT(node->start() <= position);
- ABSL_HARDENING_ASSERT(node->finish() > position);
- return node->value(position);
- }
- pointer operator->() const { return &operator*(); }
- btree_iterator &operator++() {
- increment();
- return *this;
- }
- btree_iterator &operator--() {
- decrement();
- return *this;
- }
- btree_iterator operator++(int) {
- btree_iterator tmp = *this;
- ++*this;
- return tmp;
- }
- btree_iterator operator--(int) {
- btree_iterator tmp = *this;
- --*this;
- return tmp;
- }
- private:
- template <typename Params>
- friend class btree;
- template <typename Tree>
- friend class btree_container;
- template <typename Tree>
- friend class btree_set_container;
- template <typename Tree>
- friend class btree_map_container;
- template <typename Tree>
- friend class btree_multiset_container;
- template <typename N, typename R, typename P>
- friend struct btree_iterator;
- template <typename TreeType, typename CheckerType>
- friend class base_checker;
- const key_type &key() const { return node->key(position); }
- slot_type *slot() { return node->slot(position); }
- // The node in the tree the iterator is pointing at.
- Node *node;
- // The position within the node of the tree the iterator is pointing at.
- // NOTE: this is an int rather than a field_type because iterators can point
- // to invalid positions (such as -1) in certain circumstances.
- int position;
- };
- template <typename Params>
- class btree {
- using node_type = btree_node<Params>;
- using is_key_compare_to = typename Params::is_key_compare_to;
- using init_type = typename Params::init_type;
- using field_type = typename node_type::field_type;
- using is_multi_container = typename Params::is_multi_container;
- using is_key_compare_adapted = typename Params::is_key_compare_adapted;
- // We use a static empty node for the root/leftmost/rightmost of empty btrees
- // in order to avoid branching in begin()/end().
- struct alignas(node_type::Alignment()) EmptyNodeType : node_type {
- using field_type = typename node_type::field_type;
- node_type *parent;
- field_type position = 0;
- field_type start = 0;
- field_type finish = 0;
- // max_count must be != kInternalNodeMaxCount (so that this node is regarded
- // as a leaf node). max_count() is never called when the tree is empty.
- field_type max_count = node_type::kInternalNodeMaxCount + 1;
- #ifdef _MSC_VER
- // MSVC has constexpr code generations bugs here.
- EmptyNodeType() : parent(this) {}
- #else
- constexpr EmptyNodeType(node_type *p) : parent(p) {}
- #endif
- };
- static node_type *EmptyNode() {
- #ifdef _MSC_VER
- static EmptyNodeType *empty_node = new EmptyNodeType;
- // This assert fails on some other construction methods.
- assert(empty_node->parent == empty_node);
- return empty_node;
- #else
- static constexpr EmptyNodeType empty_node(
- const_cast<EmptyNodeType *>(&empty_node));
- return const_cast<EmptyNodeType *>(&empty_node);
- #endif
- }
- enum : uint32_t {
- kNodeValues = node_type::kNodeValues,
- kMinNodeValues = kNodeValues / 2,
- };
- struct node_stats {
- using size_type = typename Params::size_type;
- node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {}
- node_stats &operator+=(const node_stats &other) {
- leaf_nodes += other.leaf_nodes;
- internal_nodes += other.internal_nodes;
- return *this;
- }
- size_type leaf_nodes;
- size_type internal_nodes;
- };
- public:
- using key_type = typename Params::key_type;
- using value_type = typename Params::value_type;
- using size_type = typename Params::size_type;
- using difference_type = typename Params::difference_type;
- using key_compare = typename Params::key_compare;
- using value_compare = typename Params::value_compare;
- using allocator_type = typename Params::allocator_type;
- using reference = typename Params::reference;
- using const_reference = typename Params::const_reference;
- using pointer = typename Params::pointer;
- using const_pointer = typename Params::const_pointer;
- using iterator = btree_iterator<node_type, reference, pointer>;
- using const_iterator = typename iterator::const_iterator;
- using reverse_iterator = std::reverse_iterator<iterator>;
- using const_reverse_iterator = std::reverse_iterator<const_iterator>;
- using node_handle_type = node_handle<Params, Params, allocator_type>;
- // Internal types made public for use by btree_container types.
- using params_type = Params;
- using slot_type = typename Params::slot_type;
- private:
- // For use in copy_or_move_values_in_order.
- const value_type &maybe_move_from_iterator(const_iterator it) { return *it; }
- value_type &&maybe_move_from_iterator(iterator it) { return std::move(*it); }
- // Copies or moves (depending on the template parameter) the values in
- // other into this btree in their order in other. This btree must be empty
- // before this method is called. This method is used in copy construction,
- // copy assignment, and move assignment.
- template <typename Btree>
- void copy_or_move_values_in_order(Btree *other);
- // Validates that various assumptions/requirements are true at compile time.
- constexpr static bool static_assert_validation();
- public:
- btree(const key_compare &comp, const allocator_type &alloc);
- btree(const btree &other);
- btree(btree &&other) noexcept
- : root_(std::move(other.root_)),
- rightmost_(absl::exchange(other.rightmost_, EmptyNode())),
- size_(absl::exchange(other.size_, 0)) {
- other.mutable_root() = EmptyNode();
- }
- ~btree() {
- // Put static_asserts in destructor to avoid triggering them before the type
- // is complete.
- static_assert(static_assert_validation(), "This call must be elided.");
- clear();
- }
- // Assign the contents of other to *this.
- btree &operator=(const btree &other);
- btree &operator=(btree &&other) noexcept;
- iterator begin() { return iterator(leftmost()); }
- const_iterator begin() const { return const_iterator(leftmost()); }
- iterator end() { return iterator(rightmost_, rightmost_->finish()); }
- const_iterator end() const {
- return const_iterator(rightmost_, rightmost_->finish());
- }
- reverse_iterator rbegin() { return reverse_iterator(end()); }
- const_reverse_iterator rbegin() const {
- return const_reverse_iterator(end());
- }
- reverse_iterator rend() { return reverse_iterator(begin()); }
- const_reverse_iterator rend() const {
- return const_reverse_iterator(begin());
- }
- // Finds the first element whose key is not less than key.
- template <typename K>
- iterator lower_bound(const K &key) {
- return internal_end(internal_lower_bound(key));
- }
- template <typename K>
- const_iterator lower_bound(const K &key) const {
- return internal_end(internal_lower_bound(key));
- }
- // Finds the first element whose key is greater than key.
- template <typename K>
- iterator upper_bound(const K &key) {
- return internal_end(internal_upper_bound(key));
- }
- template <typename K>
- const_iterator upper_bound(const K &key) const {
- return internal_end(internal_upper_bound(key));
- }
- // Finds the range of values which compare equal to key. The first member of
- // the returned pair is equal to lower_bound(key). The second member of the
- // pair is equal to upper_bound(key).
- template <typename K>
- std::pair<iterator, iterator> equal_range(const K &key);
- template <typename K>
- std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
- return const_cast<btree *>(this)->equal_range(key);
- }
- // Inserts a value into the btree only if it does not already exist. The
- // boolean return value indicates whether insertion succeeded or failed.
- // Requirement: if `key` already exists in the btree, does not consume `args`.
- // Requirement: `key` is never referenced after consuming `args`.
- template <typename K, typename... Args>
- std::pair<iterator, bool> insert_unique(const K &key, Args &&... args);
- // Inserts with hint. Checks to see if the value should be placed immediately
- // before `position` in the tree. If so, then the insertion will take
- // amortized constant time. If not, the insertion will take amortized
- // logarithmic time as if a call to insert_unique() were made.
- // Requirement: if `key` already exists in the btree, does not consume `args`.
- // Requirement: `key` is never referenced after consuming `args`.
- template <typename K, typename... Args>
- std::pair<iterator, bool> insert_hint_unique(iterator position,
- const K &key,
- Args &&... args);
- // Insert a range of values into the btree.
- // Note: the first overload avoids constructing a value_type if the key
- // already exists in the btree.
- template <typename InputIterator,
- typename = decltype(std::declval<const key_compare &>()(
- params_type::key(*std::declval<InputIterator>()),
- std::declval<const key_type &>()))>
- void insert_iterator_unique(InputIterator b, InputIterator e, int);
- // We need the second overload for cases in which we need to construct a
- // value_type in order to compare it with the keys already in the btree.
- template <typename InputIterator>
- void insert_iterator_unique(InputIterator b, InputIterator e, char);
- // Inserts a value into the btree.
- template <typename ValueType>
- iterator insert_multi(const key_type &key, ValueType &&v);
- // Inserts a value into the btree.
- template <typename ValueType>
- iterator insert_multi(ValueType &&v) {
- return insert_multi(params_type::key(v), std::forward<ValueType>(v));
- }
- // Insert with hint. Check to see if the value should be placed immediately
- // before position in the tree. If it does, then the insertion will take
- // amortized constant time. If not, the insertion will take amortized
- // logarithmic time as if a call to insert_multi(v) were made.
- template <typename ValueType>
- iterator insert_hint_multi(iterator position, ValueType &&v);
- // Insert a range of values into the btree.
- template <typename InputIterator>
- void insert_iterator_multi(InputIterator b, InputIterator e);
- // Erase the specified iterator from the btree. The iterator must be valid
- // (i.e. not equal to end()). Return an iterator pointing to the node after
- // the one that was erased (or end() if none exists).
- // Requirement: does not read the value at `*iter`.
- iterator erase(iterator iter);
- // Erases range. Returns the number of keys erased and an iterator pointing
- // to the element after the last erased element.
- std::pair<size_type, iterator> erase_range(iterator begin, iterator end);
- // Erases the specified key from the btree. Returns 1 if an element was
- // erased and 0 otherwise.
- template <typename K>
- size_type erase_unique(const K &key);
- // Erases all of the entries matching the specified key from the
- // btree. Returns the number of elements erased.
- template <typename K>
- size_type erase_multi(const K &key);
- // Finds the iterator corresponding to a key or returns end() if the key is
- // not present.
- template <typename K>
- iterator find(const K &key) {
- return internal_end(internal_find(key));
- }
- template <typename K>
- const_iterator find(const K &key) const {
- return internal_end(internal_find(key));
- }
- // Returns a count of the number of times the key appears in the btree.
- template <typename K>
- size_type count_unique(const K &key) const {
- const iterator begin = internal_find(key);
- if (begin.node == nullptr) {
- // The key doesn't exist in the tree.
- return 0;
- }
- return 1;
- }
- // Returns a count of the number of times the key appears in the btree.
- template <typename K>
- size_type count_multi(const K &key) const {
- const auto range = equal_range(key);
- return std::distance(range.first, range.second);
- }
- // Clear the btree, deleting all of the values it contains.
- void clear();
- // Swaps the contents of `this` and `other`.
- void swap(btree &other);
- const key_compare &key_comp() const noexcept {
- return root_.template get<0>();
- }
- template <typename K1, typename K2>
- bool compare_keys(const K1 &a, const K2 &b) const {
- return compare_internal::compare_result_as_less_than(key_comp()(a, b));
- }
- value_compare value_comp() const { return value_compare(key_comp()); }
- // Verifies the structure of the btree.
- void verify() const;
- // Size routines.
- size_type size() const { return size_; }
- size_type max_size() const { return (std::numeric_limits<size_type>::max)(); }
- bool empty() const { return size_ == 0; }
- // The height of the btree. An empty tree will have height 0.
- size_type height() const {
- size_type h = 0;
- if (!empty()) {
- // Count the length of the chain from the leftmost node up to the
- // root. We actually count from the root back around to the level below
- // the root, but the calculation is the same because of the circularity
- // of that traversal.
- const node_type *n = root();
- do {
- ++h;
- n = n->parent();
- } while (n != root());
- }
- return h;
- }
- // The number of internal, leaf and total nodes used by the btree.
- size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; }
- size_type internal_nodes() const {
- return internal_stats(root()).internal_nodes;
- }
- size_type nodes() const {
- node_stats stats = internal_stats(root());
- return stats.leaf_nodes + stats.internal_nodes;
- }
- // The total number of bytes used by the btree.
- size_type bytes_used() const {
- node_stats stats = internal_stats(root());
- if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
- return sizeof(*this) + node_type::LeafSize(root()->max_count());
- } else {
- return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() +
- stats.internal_nodes * node_type::InternalSize();
- }
- }
- // The average number of bytes used per value stored in the btree.
- static double average_bytes_per_value() {
- // Returns the number of bytes per value on a leaf node that is 75%
- // full. Experimentally, this matches up nicely with the computed number of
- // bytes per value in trees that had their values inserted in random order.
- return node_type::LeafSize() / (kNodeValues * 0.75);
- }
- // The fullness of the btree. Computed as the number of elements in the btree
- // divided by the maximum number of elements a tree with the current number
- // of nodes could hold. A value of 1 indicates perfect space
- // utilization. Smaller values indicate space wastage.
- // Returns 0 for empty trees.
- double fullness() const {
- if (empty()) return 0.0;
- return static_cast<double>(size()) / (nodes() * kNodeValues);
- }
- // The overhead of the btree structure in bytes per node. Computed as the
- // total number of bytes used by the btree minus the number of bytes used for
- // storing elements divided by the number of elements.
- // Returns 0 for empty trees.
- double overhead() const {
- if (empty()) return 0.0;
- return (bytes_used() - size() * sizeof(value_type)) /
- static_cast<double>(size());
- }
- // The allocator used by the btree.
- allocator_type get_allocator() const { return allocator(); }
- private:
- // Internal accessor routines.
- node_type *root() { return root_.template get<2>(); }
- const node_type *root() const { return root_.template get<2>(); }
- node_type *&mutable_root() noexcept { return root_.template get<2>(); }
- key_compare *mutable_key_comp() noexcept { return &root_.template get<0>(); }
- // The leftmost node is stored as the parent of the root node.
- node_type *leftmost() { return root()->parent(); }
- const node_type *leftmost() const { return root()->parent(); }
- // Allocator routines.
- allocator_type *mutable_allocator() noexcept {
- return &root_.template get<1>();
- }
- const allocator_type &allocator() const noexcept {
- return root_.template get<1>();
- }
- // Allocates a correctly aligned node of at least size bytes using the
- // allocator.
- node_type *allocate(const size_type size) {
- return reinterpret_cast<node_type *>(
- absl::container_internal::Allocate<node_type::Alignment()>(
- mutable_allocator(), size));
- }
- // Node creation/deletion routines.
- node_type *new_internal_node(node_type *parent) {
- node_type *n = allocate(node_type::InternalSize());
- n->init_internal(parent);
- return n;
- }
- node_type *new_leaf_node(node_type *parent) {
- node_type *n = allocate(node_type::LeafSize());
- n->init_leaf(parent, kNodeValues);
- return n;
- }
- node_type *new_leaf_root_node(const int max_count) {
- node_type *n = allocate(node_type::LeafSize(max_count));
- n->init_leaf(/*parent=*/n, max_count);
- return n;
- }
- // Deletion helper routines.
- iterator rebalance_after_delete(iterator iter);
- // Rebalances or splits the node iter points to.
- void rebalance_or_split(iterator *iter);
- // Merges the values of left, right and the delimiting key on their parent
- // onto left, removing the delimiting key and deleting right.
- void merge_nodes(node_type *left, node_type *right);
- // Tries to merge node with its left or right sibling, and failing that,
- // rebalance with its left or right sibling. Returns true if a merge
- // occurred, at which point it is no longer valid to access node. Returns
- // false if no merging took place.
- bool try_merge_or_rebalance(iterator *iter);
- // Tries to shrink the height of the tree by 1.
- void try_shrink();
- iterator internal_end(iterator iter) {
- return iter.node != nullptr ? iter : end();
- }
- const_iterator internal_end(const_iterator iter) const {
- return iter.node != nullptr ? iter : end();
- }
- // Emplaces a value into the btree immediately before iter. Requires that
- // key(v) <= iter.key() and (--iter).key() <= key(v).
- template <typename... Args>
- iterator internal_emplace(iterator iter, Args &&... args);
- // Returns an iterator pointing to the first value >= the value "iter" is
- // pointing at. Note that "iter" might be pointing to an invalid location such
- // as iter.position == iter.node->finish(). This routine simply moves iter up
- // in the tree to a valid location.
- // Requires: iter.node is non-null.
- template <typename IterType>
- static IterType internal_last(IterType iter);
- // Returns an iterator pointing to the leaf position at which key would
- // reside in the tree. We provide 2 versions of internal_locate. The first
- // version uses a less-than comparator and is incapable of distinguishing when
- // there is an exact match. The second version is for the key-compare-to
- // specialization and distinguishes exact matches. The key-compare-to
- // specialization allows the caller to avoid a subsequent comparison to
- // determine if an exact match was made, which is important for keys with
- // expensive comparison, such as strings.
- template <typename K>
- SearchResult<iterator, is_key_compare_to::value> internal_locate(
- const K &key) const;
- template <typename K>
- SearchResult<iterator, false> internal_locate_impl(
- const K &key, std::false_type /* IsCompareTo */) const;
- template <typename K>
- SearchResult<iterator, true> internal_locate_impl(
- const K &key, std::true_type /* IsCompareTo */) const;
- // Internal routine which implements lower_bound().
- template <typename K>
- iterator internal_lower_bound(const K &key) const;
- // Internal routine which implements upper_bound().
- template <typename K>
- iterator internal_upper_bound(const K &key) const;
- // Internal routine which implements find().
- template <typename K>
- iterator internal_find(const K &key) const;
- // Verifies the tree structure of node.
- int internal_verify(const node_type *node, const key_type *lo,
- const key_type *hi) const;
- node_stats internal_stats(const node_type *node) const {
- // The root can be a static empty node.
- if (node == nullptr || (node == root() && empty())) {
- return node_stats(0, 0);
- }
- if (node->leaf()) {
- return node_stats(1, 0);
- }
- node_stats res(0, 1);
- for (int i = node->start(); i <= node->finish(); ++i) {
- res += internal_stats(node->child(i));
- }
- return res;
- }
- public:
- // Exposed only for tests.
- static bool testonly_uses_linear_node_search() {
- return node_type::testonly_uses_linear_node_search();
- }
- private:
- // We use compressed tuple in order to save space because key_compare and
- // allocator_type are usually empty.
- absl::container_internal::CompressedTuple<key_compare, allocator_type,
- node_type *>
- root_;
- // A pointer to the rightmost node. Note that the leftmost node is stored as
- // the root's parent.
- node_type *rightmost_;
- // Number of values.
- size_type size_;
- };
- ////
- // btree_node methods
- template <typename P>
- template <typename... Args>
- inline void btree_node<P>::emplace_value(const size_type i,
- allocator_type *alloc,
- Args &&... args) {
- assert(i >= start());
- assert(i <= finish());
- // Shift old values to create space for new value and then construct it in
- // place.
- if (i < finish()) {
- transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this,
- alloc);
- }
- value_init(i, alloc, std::forward<Args>(args)...);
- set_finish(finish() + 1);
- if (!leaf() && finish() > i + 1) {
- for (int j = finish(); j > i + 1; --j) {
- set_child(j, child(j - 1));
- }
- clear_child(i + 1);
- }
- }
- template <typename P>
- inline void btree_node<P>::remove_values(const field_type i,
- const field_type to_erase,
- allocator_type *alloc) {
- // Transfer values after the removed range into their new places.
- value_destroy_n(i, to_erase, alloc);
- const field_type orig_finish = finish();
- const field_type src_i = i + to_erase;
- transfer_n(orig_finish - src_i, i, src_i, this, alloc);
- if (!leaf()) {
- // Delete all children between begin and end.
- for (int j = 0; j < to_erase; ++j) {
- clear_and_delete(child(i + j + 1), alloc);
- }
- // Rotate children after end into new positions.
- for (int j = i + to_erase + 1; j <= orig_finish; ++j) {
- set_child(j - to_erase, child(j));
- clear_child(j);
- }
- }
- set_finish(orig_finish - to_erase);
- }
- template <typename P>
- void btree_node<P>::rebalance_right_to_left(const int to_move,
- btree_node *right,
- allocator_type *alloc) {
- assert(parent() == right->parent());
- assert(position() + 1 == right->position());
- assert(right->count() >= count());
- assert(to_move >= 1);
- assert(to_move <= right->count());
- // 1) Move the delimiting value in the parent to the left node.
- transfer(finish(), position(), parent(), alloc);
- // 2) Move the (to_move - 1) values from the right node to the left node.
- transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc);
- // 3) Move the new delimiting value to the parent from the right node.
- parent()->transfer(position(), right->start() + to_move - 1, right, alloc);
- // 4) Shift the values in the right node to their correct positions.
- right->transfer_n(right->count() - to_move, right->start(),
- right->start() + to_move, right, alloc);
- if (!leaf()) {
- // Move the child pointers from the right to the left node.
- for (int i = 0; i < to_move; ++i) {
- init_child(finish() + i + 1, right->child(i));
- }
- for (int i = right->start(); i <= right->finish() - to_move; ++i) {
- assert(i + to_move <= right->max_count());
- right->init_child(i, right->child(i + to_move));
- right->clear_child(i + to_move);
- }
- }
- // Fixup `finish` on the left and right nodes.
- set_finish(finish() + to_move);
- right->set_finish(right->finish() - to_move);
- }
- template <typename P>
- void btree_node<P>::rebalance_left_to_right(const int to_move,
- btree_node *right,
- allocator_type *alloc) {
- assert(parent() == right->parent());
- assert(position() + 1 == right->position());
- assert(count() >= right->count());
- assert(to_move >= 1);
- assert(to_move <= count());
- // Values in the right node are shifted to the right to make room for the
- // new to_move values. Then, the delimiting value in the parent and the
- // other (to_move - 1) values in the left node are moved into the right node.
- // Lastly, a new delimiting value is moved from the left node into the
- // parent, and the remaining empty left node entries are destroyed.
- // 1) Shift existing values in the right node to their correct positions.
- right->transfer_n_backward(right->count(), right->start() + to_move,
- right->start(), right, alloc);
- // 2) Move the delimiting value in the parent to the right node.
- right->transfer(right->start() + to_move - 1, position(), parent(), alloc);
- // 3) Move the (to_move - 1) values from the left node to the right node.
- right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this,
- alloc);
- // 4) Move the new delimiting value to the parent from the left node.
- parent()->transfer(position(), finish() - to_move, this, alloc);
- if (!leaf()) {
- // Move the child pointers from the left to the right node.
- for (int i = right->finish(); i >= right->start(); --i) {
- right->init_child(i + to_move, right->child(i));
- right->clear_child(i);
- }
- for (int i = 1; i <= to_move; ++i) {
- right->init_child(i - 1, child(finish() - to_move + i));
- clear_child(finish() - to_move + i);
- }
- }
- // Fixup the counts on the left and right nodes.
- set_finish(finish() - to_move);
- right->set_finish(right->finish() + to_move);
- }
- template <typename P>
- void btree_node<P>::split(const int insert_position, btree_node *dest,
- allocator_type *alloc) {
- assert(dest->count() == 0);
- assert(max_count() == kNodeValues);
- // We bias the split based on the position being inserted. If we're
- // inserting at the beginning of the left node then bias the split to put
- // more values on the right node. If we're inserting at the end of the
- // right node then bias the split to put more values on the left node.
- if (insert_position == start()) {
- dest->set_finish(dest->start() + finish() - 1);
- } else if (insert_position == kNodeValues) {
- dest->set_finish(dest->start());
- } else {
- dest->set_finish(dest->start() + count() / 2);
- }
- set_finish(finish() - dest->count());
- assert(count() >= 1);
- // Move values from the left sibling to the right sibling.
- dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc);
- // The split key is the largest value in the left sibling.
- --mutable_finish();
- parent()->emplace_value(position(), alloc, finish_slot());
- value_destroy(finish(), alloc);
- parent()->init_child(position() + 1, dest);
- if (!leaf()) {
- for (int i = dest->start(), j = finish() + 1; i <= dest->finish();
- ++i, ++j) {
- assert(child(j) != nullptr);
- dest->init_child(i, child(j));
- clear_child(j);
- }
- }
- }
- template <typename P>
- void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
- assert(parent() == src->parent());
- assert(position() + 1 == src->position());
- // Move the delimiting value to the left node.
- value_init(finish(), alloc, parent()->slot(position()));
- // Move the values from the right to the left node.
- transfer_n(src->count(), finish() + 1, src->start(), src, alloc);
- if (!leaf()) {
- // Move the child pointers from the right to the left node.
- for (int i = src->start(), j = finish() + 1; i <= src->finish(); ++i, ++j) {
- init_child(j, src->child(i));
- src->clear_child(i);
- }
- }
- // Fixup `finish` on the src and dest nodes.
- set_finish(start() + 1 + count() + src->count());
- src->set_finish(src->start());
- // Remove the value on the parent node and delete the src node.
- parent()->remove_values(position(), /*to_erase=*/1, alloc);
- }
- template <typename P>
- void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) {
- if (node->leaf()) {
- node->value_destroy_n(node->start(), node->count(), alloc);
- deallocate(LeafSize(node->max_count()), node, alloc);
- return;
- }
- if (node->count() == 0) {
- deallocate(InternalSize(), node, alloc);
- return;
- }
- // The parent of the root of the subtree we are deleting.
- btree_node *delete_root_parent = node->parent();
- // Navigate to the leftmost leaf under node, and then delete upwards.
- while (!node->leaf()) node = node->start_child();
- // Use `int` because `pos` needs to be able to hold `kNodeValues+1`, which
- // isn't guaranteed to be a valid `field_type`.
- int pos = node->position();
- btree_node *parent = node->parent();
- for (;;) {
- // In each iteration of the next loop, we delete one leaf node and go right.
- assert(pos <= parent->finish());
- do {
- node = parent->child(pos);
- if (!node->leaf()) {
- // Navigate to the leftmost leaf under node.
- while (!node->leaf()) node = node->start_child();
- pos = node->position();
- parent = node->parent();
- }
- node->value_destroy_n(node->start(), node->count(), alloc);
- deallocate(LeafSize(node->max_count()), node, alloc);
- ++pos;
- } while (pos <= parent->finish());
- // Once we've deleted all children of parent, delete parent and go up/right.
- assert(pos > parent->finish());
- do {
- node = parent;
- pos = node->position();
- parent = node->parent();
- node->value_destroy_n(node->start(), node->count(), alloc);
- deallocate(InternalSize(), node, alloc);
- if (parent == delete_root_parent) return;
- ++pos;
- } while (pos > parent->finish());
- }
- }
- ////
- // btree_iterator methods
- template <typename N, typename R, typename P>
- void btree_iterator<N, R, P>::increment_slow() {
- if (node->leaf()) {
- assert(position >= node->finish());
- btree_iterator save(*this);
- while (position == node->finish() && !node->is_root()) {
- assert(node->parent()->child(node->position()) == node);
- position = node->position();
- node = node->parent();
- }
- // TODO(ezb): assert we aren't incrementing end() instead of handling.
- if (position == node->finish()) {
- *this = save;
- }
- } else {
- assert(position < node->finish());
- node = node->child(position + 1);
- while (!node->leaf()) {
- node = node->start_child();
- }
- position = node->start();
- }
- }
- template <typename N, typename R, typename P>
- void btree_iterator<N, R, P>::decrement_slow() {
- if (node->leaf()) {
- assert(position <= -1);
- btree_iterator save(*this);
- while (position < node->start() && !node->is_root()) {
- assert(node->parent()->child(node->position()) == node);
- position = node->position() - 1;
- node = node->parent();
- }
- // TODO(ezb): assert we aren't decrementing begin() instead of handling.
- if (position < node->start()) {
- *this = save;
- }
- } else {
- assert(position >= node->start());
- node = node->child(position);
- while (!node->leaf()) {
- node = node->child(node->finish());
- }
- position = node->finish() - 1;
- }
- }
- ////
- // btree methods
- template <typename P>
- template <typename Btree>
- void btree<P>::copy_or_move_values_in_order(Btree *other) {
- static_assert(std::is_same<btree, Btree>::value ||
- std::is_same<const btree, Btree>::value,
- "Btree type must be same or const.");
- assert(empty());
- // We can avoid key comparisons because we know the order of the
- // values is the same order we'll store them in.
- auto iter = other->begin();
- if (iter == other->end()) return;
- insert_multi(maybe_move_from_iterator(iter));
- ++iter;
- for (; iter != other->end(); ++iter) {
- // If the btree is not empty, we can just insert the new value at the end
- // of the tree.
- internal_emplace(end(), maybe_move_from_iterator(iter));
- }
- }
- template <typename P>
- constexpr bool btree<P>::static_assert_validation() {
- static_assert(std::is_nothrow_copy_constructible<key_compare>::value,
- "Key comparison must be nothrow copy constructible");
- static_assert(std::is_nothrow_copy_constructible<allocator_type>::value,
- "Allocator must be nothrow copy constructible");
- static_assert(type_traits_internal::is_trivially_copyable<iterator>::value,
- "iterator not trivially copyable.");
- // Note: We assert that kTargetValues, which is computed from
- // Params::kTargetNodeSize, must fit the node_type::field_type.
- static_assert(
- kNodeValues < (1 << (8 * sizeof(typename node_type::field_type))),
- "target node size too large");
- // Verify that key_compare returns an absl::{weak,strong}_ordering or bool.
- using compare_result_type =
- absl::result_of_t<key_compare(key_type, key_type)>;
- static_assert(
- std::is_same<compare_result_type, bool>::value ||
- std::is_convertible<compare_result_type, absl::weak_ordering>::value,
- "key comparison function must return absl::{weak,strong}_ordering or "
- "bool.");
- // Test the assumption made in setting kNodeValueSpace.
- static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4,
- "node space assumption incorrect");
- return true;
- }
- template <typename P>
- btree<P>::btree(const key_compare &comp, const allocator_type &alloc)
- : root_(comp, alloc, EmptyNode()), rightmost_(EmptyNode()), size_(0) {}
- template <typename P>
- btree<P>::btree(const btree &other)
- : btree(other.key_comp(), other.allocator()) {
- copy_or_move_values_in_order(&other);
- }
- template <typename P>
- template <typename K>
- auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> {
- const iterator lower = lower_bound(key);
- // TODO(ezb): we should be able to avoid this comparison when there's a
- // three-way comparator.
- if (lower == end() || compare_keys(key, lower.key())) return {lower, lower};
- const iterator next = std::next(lower);
- // When the comparator is heterogeneous, we can't assume that comparison with
- // non-`key_type` will be equivalent to `key_type` comparisons so there
- // could be multiple equivalent keys even in a unique-container. But for
- // heterogeneous comparisons from the default string adapted comparators, we
- // don't need to worry about this.
- if (!is_multi_container::value &&
- (std::is_same<K, key_type>::value || is_key_compare_adapted::value)) {
- // The next iterator after lower must point to a key greater than `key`.
- // Note: if this assert fails, then it may indicate that the comparator does
- // not meet the equivalence requirements for Compare
- // (see https://en.cppreference.com/w/cpp/named_req/Compare).
- assert(next == end() || compare_keys(key, next.key()));
- return {lower, next};
- }
- // Try once more to avoid the call to upper_bound() if there's only one
- // equivalent key. This should prevent all calls to upper_bound() in cases of
- // unique-containers with heterogeneous comparators in which all comparison
- // operators are equivalent.
- if (next == end() || compare_keys(key, next.key())) return {lower, next};
- // In this case, we need to call upper_bound() to avoid worst case O(N)
- // behavior if we were to iterate over equal keys.
- return {lower, upper_bound(key)};
- }
- template <typename P>
- template <typename K, typename... Args>
- auto btree<P>::insert_unique(const K &key, Args &&... args)
- -> std::pair<iterator, bool> {
- if (empty()) {
- mutable_root() = rightmost_ = new_leaf_root_node(1);
- }
- auto res = internal_locate(key);
- iterator &iter = res.value;
- if (res.HasMatch()) {
- if (res.IsEq()) {
- // The key already exists in the tree, do nothing.
- return {iter, false};
- }
- } else {
- iterator last = internal_last(iter);
- if (last.node && !compare_keys(key, last.key())) {
- // The key already exists in the tree, do nothing.
- return {last, false};
- }
- }
- return {internal_emplace(iter, std::forward<Args>(args)...), true};
- }
- template <typename P>
- template <typename K, typename... Args>
- inline auto btree<P>::insert_hint_unique(iterator position, const K &key,
- Args &&... args)
- -> std::pair<iterator, bool> {
- if (!empty()) {
- if (position == end() || compare_keys(key, position.key())) {
- if (position == begin() || compare_keys(std::prev(position).key(), key)) {
- // prev.key() < key < position.key()
- return {internal_emplace(position, std::forward<Args>(args)...), true};
- }
- } else if (compare_keys(position.key(), key)) {
- ++position;
- if (position == end() || compare_keys(key, position.key())) {
- // {original `position`}.key() < key < {current `position`}.key()
- return {internal_emplace(position, std::forward<Args>(args)...), true};
- }
- } else {
- // position.key() == key
- return {position, false};
- }
- }
- return insert_unique(key, std::forward<Args>(args)...);
- }
- template <typename P>
- template <typename InputIterator, typename>
- void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) {
- for (; b != e; ++b) {
- insert_hint_unique(end(), params_type::key(*b), *b);
- }
- }
- template <typename P>
- template <typename InputIterator>
- void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) {
- for (; b != e; ++b) {
- init_type value(*b);
- insert_hint_unique(end(), params_type::key(value), std::move(value));
- }
- }
- template <typename P>
- template <typename ValueType>
- auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator {
- if (empty()) {
- mutable_root() = rightmost_ = new_leaf_root_node(1);
- }
- iterator iter = internal_upper_bound(key);
- if (iter.node == nullptr) {
- iter = end();
- }
- return internal_emplace(iter, std::forward<ValueType>(v));
- }
- template <typename P>
- template <typename ValueType>
- auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator {
- if (!empty()) {
- const key_type &key = params_type::key(v);
- if (position == end() || !compare_keys(position.key(), key)) {
- if (position == begin() ||
- !compare_keys(key, std::prev(position).key())) {
- // prev.key() <= key <= position.key()
- return internal_emplace(position, std::forward<ValueType>(v));
- }
- } else {
- ++position;
- if (position == end() || !compare_keys(position.key(), key)) {
- // {original `position`}.key() < key < {current `position`}.key()
- return internal_emplace(position, std::forward<ValueType>(v));
- }
- }
- }
- return insert_multi(std::forward<ValueType>(v));
- }
- template <typename P>
- template <typename InputIterator>
- void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) {
- for (; b != e; ++b) {
- insert_hint_multi(end(), *b);
- }
- }
- template <typename P>
- auto btree<P>::operator=(const btree &other) -> btree & {
- if (this != &other) {
- clear();
- *mutable_key_comp() = other.key_comp();
- if (absl::allocator_traits<
- allocator_type>::propagate_on_container_copy_assignment::value) {
- *mutable_allocator() = other.allocator();
- }
- copy_or_move_values_in_order(&other);
- }
- return *this;
- }
- template <typename P>
- auto btree<P>::operator=(btree &&other) noexcept -> btree & {
- if (this != &other) {
- clear();
- using std::swap;
- if (absl::allocator_traits<
- allocator_type>::propagate_on_container_copy_assignment::value) {
- // Note: `root_` also contains the allocator and the key comparator.
- swap(root_, other.root_);
- swap(rightmost_, other.rightmost_);
- swap(size_, other.size_);
- } else {
- if (allocator() == other.allocator()) {
- swap(mutable_root(), other.mutable_root());
- swap(*mutable_key_comp(), *other.mutable_key_comp());
- swap(rightmost_, other.rightmost_);
- swap(size_, other.size_);
- } else {
- // We aren't allowed to propagate the allocator and the allocator is
- // different so we can't take over its memory. We must move each element
- // individually. We need both `other` and `this` to have `other`s key
- // comparator while moving the values so we can't swap the key
- // comparators.
- *mutable_key_comp() = other.key_comp();
- copy_or_move_values_in_order(&other);
- }
- }
- }
- return *this;
- }
- template <typename P>
- auto btree<P>::erase(iterator iter) -> iterator {
- bool internal_delete = false;
- if (!iter.node->leaf()) {
- // Deletion of a value on an internal node. First, move the largest value
- // from our left child here, then delete that position (in remove_values()
- // below). We can get to the largest value from our left child by
- // decrementing iter.
- iterator internal_iter(iter);
- --iter;
- assert(iter.node->leaf());
- params_type::move(mutable_allocator(), iter.node->slot(iter.position),
- internal_iter.node->slot(internal_iter.position));
- internal_delete = true;
- }
- // Delete the key from the leaf.
- iter.node->remove_values(iter.position, /*to_erase=*/1, mutable_allocator());
- --size_;
- // We want to return the next value after the one we just erased. If we
- // erased from an internal node (internal_delete == true), then the next
- // value is ++(++iter). If we erased from a leaf node (internal_delete ==
- // false) then the next value is ++iter. Note that ++iter may point to an
- // internal node and the value in the internal node may move to a leaf node
- // (iter.node) when rebalancing is performed at the leaf level.
- iterator res = rebalance_after_delete(iter);
- // If we erased from an internal node, advance the iterator.
- if (internal_delete) {
- ++res;
- }
- return res;
- }
- template <typename P>
- auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
- // Merge/rebalance as we walk back up the tree.
- iterator res(iter);
- bool first_iteration = true;
- for (;;) {
- if (iter.node == root()) {
- try_shrink();
- if (empty()) {
- return end();
- }
- break;
- }
- if (iter.node->count() >= kMinNodeValues) {
- break;
- }
- bool merged = try_merge_or_rebalance(&iter);
- // On the first iteration, we should update `res` with `iter` because `res`
- // may have been invalidated.
- if (first_iteration) {
- res = iter;
- first_iteration = false;
- }
- if (!merged) {
- break;
- }
- iter.position = iter.node->position();
- iter.node = iter.node->parent();
- }
- // Adjust our return value. If we're pointing at the end of a node, advance
- // the iterator.
- if (res.position == res.node->finish()) {
- res.position = res.node->finish() - 1;
- ++res;
- }
- return res;
- }
- template <typename P>
- auto btree<P>::erase_range(iterator begin, iterator end)
- -> std::pair<size_type, iterator> {
- difference_type count = std::distance(begin, end);
- assert(count >= 0);
- if (count == 0) {
- return {0, begin};
- }
- if (count == size_) {
- clear();
- return {count, this->end()};
- }
- if (begin.node == end.node) {
- assert(end.position > begin.position);
- begin.node->remove_values(begin.position, end.position - begin.position,
- mutable_allocator());
- size_ -= count;
- return {count, rebalance_after_delete(begin)};
- }
- const size_type target_size = size_ - count;
- while (size_ > target_size) {
- if (begin.node->leaf()) {
- const size_type remaining_to_erase = size_ - target_size;
- const size_type remaining_in_node = begin.node->finish() - begin.position;
- const size_type to_erase =
- (std::min)(remaining_to_erase, remaining_in_node);
- begin.node->remove_values(begin.position, to_erase, mutable_allocator());
- size_ -= to_erase;
- begin = rebalance_after_delete(begin);
- } else {
- begin = erase(begin);
- }
- }
- return {count, begin};
- }
- template <typename P>
- template <typename K>
- auto btree<P>::erase_unique(const K &key) -> size_type {
- const iterator iter = internal_find(key);
- if (iter.node == nullptr) {
- // The key doesn't exist in the tree, return nothing done.
- return 0;
- }
- erase(iter);
- return 1;
- }
- template <typename P>
- template <typename K>
- auto btree<P>::erase_multi(const K &key) -> size_type {
- const iterator begin = internal_lower_bound(key);
- if (begin.node == nullptr) {
- // The key doesn't exist in the tree, return nothing done.
- return 0;
- }
- // Delete all of the keys between begin and upper_bound(key).
- const iterator end = internal_end(internal_upper_bound(key));
- return erase_range(begin, end).first;
- }
- template <typename P>
- void btree<P>::clear() {
- if (!empty()) {
- node_type::clear_and_delete(root(), mutable_allocator());
- }
- mutable_root() = EmptyNode();
- rightmost_ = EmptyNode();
- size_ = 0;
- }
- template <typename P>
- void btree<P>::swap(btree &other) {
- using std::swap;
- if (absl::allocator_traits<
- allocator_type>::propagate_on_container_swap::value) {
- // Note: `root_` also contains the allocator and the key comparator.
- swap(root_, other.root_);
- } else {
- // It's undefined behavior if the allocators are unequal here.
- assert(allocator() == other.allocator());
- swap(mutable_root(), other.mutable_root());
- swap(*mutable_key_comp(), *other.mutable_key_comp());
- }
- swap(rightmost_, other.rightmost_);
- swap(size_, other.size_);
- }
- template <typename P>
- void btree<P>::verify() const {
- assert(root() != nullptr);
- assert(leftmost() != nullptr);
- assert(rightmost_ != nullptr);
- assert(empty() || size() == internal_verify(root(), nullptr, nullptr));
- assert(leftmost() == (++const_iterator(root(), -1)).node);
- assert(rightmost_ == (--const_iterator(root(), root()->finish())).node);
- assert(leftmost()->leaf());
- assert(rightmost_->leaf());
- }
- template <typename P>
- void btree<P>::rebalance_or_split(iterator *iter) {
- node_type *&node = iter->node;
- int &insert_position = iter->position;
- assert(node->count() == node->max_count());
- assert(kNodeValues == node->max_count());
- // First try to make room on the node by rebalancing.
- node_type *parent = node->parent();
- if (node != root()) {
- if (node->position() > parent->start()) {
- // Try rebalancing with our left sibling.
- node_type *left = parent->child(node->position() - 1);
- assert(left->max_count() == kNodeValues);
- if (left->count() < kNodeValues) {
- // We bias rebalancing based on the position being inserted. If we're
- // inserting at the end of the right node then we bias rebalancing to
- // fill up the left node.
- int to_move = (kNodeValues - left->count()) /
- (1 + (insert_position < kNodeValues));
- to_move = (std::max)(1, to_move);
- if (insert_position - to_move >= node->start() ||
- left->count() + to_move < kNodeValues) {
- left->rebalance_right_to_left(to_move, node, mutable_allocator());
- assert(node->max_count() - node->count() == to_move);
- insert_position = insert_position - to_move;
- if (insert_position < node->start()) {
- insert_position = insert_position + left->count() + 1;
- node = left;
- }
- assert(node->count() < node->max_count());
- return;
- }
- }
- }
- if (node->position() < parent->finish()) {
- // Try rebalancing with our right sibling.
- node_type *right = parent->child(node->position() + 1);
- assert(right->max_count() == kNodeValues);
- if (right->count() < kNodeValues) {
- // We bias rebalancing based on the position being inserted. If we're
- // inserting at the beginning of the left node then we bias rebalancing
- // to fill up the right node.
- int to_move = (kNodeValues - right->count()) /
- (1 + (insert_position > node->start()));
- to_move = (std::max)(1, to_move);
- if (insert_position <= node->finish() - to_move ||
- right->count() + to_move < kNodeValues) {
- node->rebalance_left_to_right(to_move, right, mutable_allocator());
- if (insert_position > node->finish()) {
- insert_position = insert_position - node->count() - 1;
- node = right;
- }
- assert(node->count() < node->max_count());
- return;
- }
- }
- }
- // Rebalancing failed, make sure there is room on the parent node for a new
- // value.
- assert(parent->max_count() == kNodeValues);
- if (parent->count() == kNodeValues) {
- iterator parent_iter(node->parent(), node->position());
- rebalance_or_split(&parent_iter);
- }
- } else {
- // Rebalancing not possible because this is the root node.
- // Create a new root node and set the current root node as the child of the
- // new root.
- parent = new_internal_node(parent);
- parent->init_child(parent->start(), root());
- mutable_root() = parent;
- // If the former root was a leaf node, then it's now the rightmost node.
- assert(!parent->start_child()->leaf() ||
- parent->start_child() == rightmost_);
- }
- // Split the node.
- node_type *split_node;
- if (node->leaf()) {
- split_node = new_leaf_node(parent);
- node->split(insert_position, split_node, mutable_allocator());
- if (rightmost_ == node) rightmost_ = split_node;
- } else {
- split_node = new_internal_node(parent);
- node->split(insert_position, split_node, mutable_allocator());
- }
- if (insert_position > node->finish()) {
- insert_position = insert_position - node->count() - 1;
- node = split_node;
- }
- }
- template <typename P>
- void btree<P>::merge_nodes(node_type *left, node_type *right) {
- left->merge(right, mutable_allocator());
- if (rightmost_ == right) rightmost_ = left;
- }
- template <typename P>
- bool btree<P>::try_merge_or_rebalance(iterator *iter) {
- node_type *parent = iter->node->parent();
- if (iter->node->position() > parent->start()) {
- // Try merging with our left sibling.
- node_type *left = parent->child(iter->node->position() - 1);
- assert(left->max_count() == kNodeValues);
- if (1 + left->count() + iter->node->count() <= kNodeValues) {
- iter->position += 1 + left->count();
- merge_nodes(left, iter->node);
- iter->node = left;
- return true;
- }
- }
- if (iter->node->position() < parent->finish()) {
- // Try merging with our right sibling.
- node_type *right = parent->child(iter->node->position() + 1);
- assert(right->max_count() == kNodeValues);
- if (1 + iter->node->count() + right->count() <= kNodeValues) {
- merge_nodes(iter->node, right);
- return true;
- }
- // Try rebalancing with our right sibling. We don't perform rebalancing if
- // we deleted the first element from iter->node and the node is not
- // empty. This is a small optimization for the common pattern of deleting
- // from the front of the tree.
- if (right->count() > kMinNodeValues &&
- (iter->node->count() == 0 || iter->position > iter->node->start())) {
- int to_move = (right->count() - iter->node->count()) / 2;
- to_move = (std::min)(to_move, right->count() - 1);
- iter->node->rebalance_right_to_left(to_move, right, mutable_allocator());
- return false;
- }
- }
- if (iter->node->position() > parent->start()) {
- // Try rebalancing with our left sibling. We don't perform rebalancing if
- // we deleted the last element from iter->node and the node is not
- // empty. This is a small optimization for the common pattern of deleting
- // from the back of the tree.
- node_type *left = parent->child(iter->node->position() - 1);
- if (left->count() > kMinNodeValues &&
- (iter->node->count() == 0 || iter->position < iter->node->finish())) {
- int to_move = (left->count() - iter->node->count()) / 2;
- to_move = (std::min)(to_move, left->count() - 1);
- left->rebalance_left_to_right(to_move, iter->node, mutable_allocator());
- iter->position += to_move;
- return false;
- }
- }
- return false;
- }
- template <typename P>
- void btree<P>::try_shrink() {
- node_type *orig_root = root();
- if (orig_root->count() > 0) {
- return;
- }
- // Deleted the last item on the root node, shrink the height of the tree.
- if (orig_root->leaf()) {
- assert(size() == 0);
- mutable_root() = rightmost_ = EmptyNode();
- } else {
- node_type *child = orig_root->start_child();
- child->make_root();
- mutable_root() = child;
- }
- node_type::clear_and_delete(orig_root, mutable_allocator());
- }
- template <typename P>
- template <typename IterType>
- inline IterType btree<P>::internal_last(IterType iter) {
- assert(iter.node != nullptr);
- while (iter.position == iter.node->finish()) {
- iter.position = iter.node->position();
- iter.node = iter.node->parent();
- if (iter.node->leaf()) {
- iter.node = nullptr;
- break;
- }
- }
- return iter;
- }
- template <typename P>
- template <typename... Args>
- inline auto btree<P>::internal_emplace(iterator iter, Args &&... args)
- -> iterator {
- if (!iter.node->leaf()) {
- // We can't insert on an internal node. Instead, we'll insert after the
- // previous value which is guaranteed to be on a leaf node.
- --iter;
- ++iter.position;
- }
- const field_type max_count = iter.node->max_count();
- allocator_type *alloc = mutable_allocator();
- if (iter.node->count() == max_count) {
- // Make room in the leaf for the new item.
- if (max_count < kNodeValues) {
- // Insertion into the root where the root is smaller than the full node
- // size. Simply grow the size of the root node.
- assert(iter.node == root());
- iter.node =
- new_leaf_root_node((std::min<int>)(kNodeValues, 2 * max_count));
- // Transfer the values from the old root to the new root.
- node_type *old_root = root();
- node_type *new_root = iter.node;
- new_root->transfer_n(old_root->count(), new_root->start(),
- old_root->start(), old_root, alloc);
- new_root->set_finish(old_root->finish());
- old_root->set_finish(old_root->start());
- node_type::clear_and_delete(old_root, alloc);
- mutable_root() = rightmost_ = new_root;
- } else {
- rebalance_or_split(&iter);
- }
- }
- iter.node->emplace_value(iter.position, alloc, std::forward<Args>(args)...);
- ++size_;
- return iter;
- }
- template <typename P>
- template <typename K>
- inline auto btree<P>::internal_locate(const K &key) const
- -> SearchResult<iterator, is_key_compare_to::value> {
- return internal_locate_impl(key, is_key_compare_to());
- }
- template <typename P>
- template <typename K>
- inline auto btree<P>::internal_locate_impl(
- const K &key, std::false_type /* IsCompareTo */) const
- -> SearchResult<iterator, false> {
- iterator iter(const_cast<node_type *>(root()));
- for (;;) {
- iter.position = iter.node->lower_bound(key, key_comp()).value;
- // NOTE: we don't need to walk all the way down the tree if the keys are
- // equal, but determining equality would require doing an extra comparison
- // on each node on the way down, and we will need to go all the way to the
- // leaf node in the expected case.
- if (iter.node->leaf()) {
- break;
- }
- iter.node = iter.node->child(iter.position);
- }
- return {iter};
- }
- template <typename P>
- template <typename K>
- inline auto btree<P>::internal_locate_impl(
- const K &key, std::true_type /* IsCompareTo */) const
- -> SearchResult<iterator, true> {
- iterator iter(const_cast<node_type *>(root()));
- for (;;) {
- SearchResult<int, true> res = iter.node->lower_bound(key, key_comp());
- iter.position = res.value;
- if (res.match == MatchKind::kEq) {
- return {iter, MatchKind::kEq};
- }
- if (iter.node->leaf()) {
- break;
- }
- iter.node = iter.node->child(iter.position);
- }
- return {iter, MatchKind::kNe};
- }
- template <typename P>
- template <typename K>
- auto btree<P>::internal_lower_bound(const K &key) const -> iterator {
- iterator iter(const_cast<node_type *>(root()));
- for (;;) {
- iter.position = iter.node->lower_bound(key, key_comp()).value;
- if (iter.node->leaf()) {
- break;
- }
- iter.node = iter.node->child(iter.position);
- }
- return internal_last(iter);
- }
- template <typename P>
- template <typename K>
- auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
- iterator iter(const_cast<node_type *>(root()));
- for (;;) {
- iter.position = iter.node->upper_bound(key, key_comp());
- if (iter.node->leaf()) {
- break;
- }
- iter.node = iter.node->child(iter.position);
- }
- return internal_last(iter);
- }
- template <typename P>
- template <typename K>
- auto btree<P>::internal_find(const K &key) const -> iterator {
- auto res = internal_locate(key);
- if (res.HasMatch()) {
- if (res.IsEq()) {
- return res.value;
- }
- } else {
- const iterator iter = internal_last(res.value);
- if (iter.node != nullptr && !compare_keys(key, iter.key())) {
- return iter;
- }
- }
- return {nullptr, 0};
- }
- template <typename P>
- int btree<P>::internal_verify(const node_type *node, const key_type *lo,
- const key_type *hi) const {
- assert(node->count() > 0);
- assert(node->count() <= node->max_count());
- if (lo) {
- assert(!compare_keys(node->key(node->start()), *lo));
- }
- if (hi) {
- assert(!compare_keys(*hi, node->key(node->finish() - 1)));
- }
- for (int i = node->start() + 1; i < node->finish(); ++i) {
- assert(!compare_keys(node->key(i), node->key(i - 1)));
- }
- int count = node->count();
- if (!node->leaf()) {
- for (int i = node->start(); i <= node->finish(); ++i) {
- assert(node->child(i) != nullptr);
- assert(node->child(i)->parent() == node);
- assert(node->child(i)->position() == i);
- count += internal_verify(node->child(i),
- i == node->start() ? lo : &node->key(i - 1),
- i == node->finish() ? hi : &node->key(i));
- }
- }
- return count;
- }
- } // namespace container_internal
- ABSL_NAMESPACE_END
- } // namespace absl
- #endif // ABSL_CONTAINER_INTERNAL_BTREE_H_
|