123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306 |
- /*
- * Copyright 2018 The WebRTC project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
- #ifndef RTC_BASE_UNITS_UNIT_BASE_H_
- #define RTC_BASE_UNITS_UNIT_BASE_H_
- #include <stdint.h>
- #include <algorithm>
- #include <cmath>
- #include <limits>
- #include <type_traits>
- #include "rtc_base/checks.h"
- #include "rtc_base/numerics/safe_conversions.h"
- namespace webrtc {
- namespace rtc_units_impl {
- // UnitBase is a base class for implementing custom value types with a specific
- // unit. It provides type safety and commonly useful operations. The underlying
- // storage is always an int64_t, it's up to the unit implementation to choose
- // what scale it represents.
- //
- // It's used like:
- // class MyUnit: public UnitBase<MyUnit> {...};
- //
- // Unit_T is the subclass representing the specific unit.
- template <class Unit_T>
- class UnitBase {
- public:
- UnitBase() = delete;
- static constexpr Unit_T Zero() { return Unit_T(0); }
- static constexpr Unit_T PlusInfinity() { return Unit_T(PlusInfinityVal()); }
- static constexpr Unit_T MinusInfinity() { return Unit_T(MinusInfinityVal()); }
- constexpr bool IsZero() const { return value_ == 0; }
- constexpr bool IsFinite() const { return !IsInfinite(); }
- constexpr bool IsInfinite() const {
- return value_ == PlusInfinityVal() || value_ == MinusInfinityVal();
- }
- constexpr bool IsPlusInfinity() const { return value_ == PlusInfinityVal(); }
- constexpr bool IsMinusInfinity() const {
- return value_ == MinusInfinityVal();
- }
- constexpr bool operator==(const Unit_T& other) const {
- return value_ == other.value_;
- }
- constexpr bool operator!=(const Unit_T& other) const {
- return value_ != other.value_;
- }
- constexpr bool operator<=(const Unit_T& other) const {
- return value_ <= other.value_;
- }
- constexpr bool operator>=(const Unit_T& other) const {
- return value_ >= other.value_;
- }
- constexpr bool operator>(const Unit_T& other) const {
- return value_ > other.value_;
- }
- constexpr bool operator<(const Unit_T& other) const {
- return value_ < other.value_;
- }
- constexpr Unit_T RoundTo(const Unit_T& resolution) const {
- RTC_DCHECK(IsFinite());
- RTC_DCHECK(resolution.IsFinite());
- RTC_DCHECK_GT(resolution.value_, 0);
- return Unit_T((value_ + resolution.value_ / 2) / resolution.value_) *
- resolution.value_;
- }
- constexpr Unit_T RoundUpTo(const Unit_T& resolution) const {
- RTC_DCHECK(IsFinite());
- RTC_DCHECK(resolution.IsFinite());
- RTC_DCHECK_GT(resolution.value_, 0);
- return Unit_T((value_ + resolution.value_ - 1) / resolution.value_) *
- resolution.value_;
- }
- constexpr Unit_T RoundDownTo(const Unit_T& resolution) const {
- RTC_DCHECK(IsFinite());
- RTC_DCHECK(resolution.IsFinite());
- RTC_DCHECK_GT(resolution.value_, 0);
- return Unit_T(value_ / resolution.value_) * resolution.value_;
- }
- protected:
- template <
- typename T,
- typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
- static constexpr Unit_T FromValue(T value) {
- if (Unit_T::one_sided)
- RTC_DCHECK_GE(value, 0);
- RTC_DCHECK_GT(value, MinusInfinityVal());
- RTC_DCHECK_LT(value, PlusInfinityVal());
- return Unit_T(rtc::dchecked_cast<int64_t>(value));
- }
- template <typename T,
- typename std::enable_if<std::is_floating_point<T>::value>::type* =
- nullptr>
- static constexpr Unit_T FromValue(T value) {
- if (value == std::numeric_limits<T>::infinity()) {
- return PlusInfinity();
- } else if (value == -std::numeric_limits<T>::infinity()) {
- return MinusInfinity();
- } else {
- RTC_DCHECK(!std::isnan(value));
- return FromValue(rtc::dchecked_cast<int64_t>(value));
- }
- }
- template <
- typename T,
- typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
- static constexpr Unit_T FromFraction(int64_t denominator, T value) {
- if (Unit_T::one_sided)
- RTC_DCHECK_GE(value, 0);
- RTC_DCHECK_GT(value, MinusInfinityVal() / denominator);
- RTC_DCHECK_LT(value, PlusInfinityVal() / denominator);
- return Unit_T(rtc::dchecked_cast<int64_t>(value * denominator));
- }
- template <typename T,
- typename std::enable_if<std::is_floating_point<T>::value>::type* =
- nullptr>
- static constexpr Unit_T FromFraction(int64_t denominator, T value) {
- return FromValue(value * denominator);
- }
- template <typename T = int64_t>
- constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
- ToValue() const {
- RTC_DCHECK(IsFinite());
- return rtc::dchecked_cast<T>(value_);
- }
- template <typename T>
- constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
- ToValue() const {
- return IsPlusInfinity()
- ? std::numeric_limits<T>::infinity()
- : IsMinusInfinity() ? -std::numeric_limits<T>::infinity()
- : value_;
- }
- template <typename T>
- constexpr T ToValueOr(T fallback_value) const {
- return IsFinite() ? value_ : fallback_value;
- }
- template <int64_t Denominator, typename T = int64_t>
- constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
- ToFraction() const {
- RTC_DCHECK(IsFinite());
- if (Unit_T::one_sided) {
- return rtc::dchecked_cast<T>(
- DivRoundPositiveToNearest(value_, Denominator));
- } else {
- return rtc::dchecked_cast<T>(DivRoundToNearest(value_, Denominator));
- }
- }
- template <int64_t Denominator, typename T>
- constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
- ToFraction() const {
- return ToValue<T>() * (1 / static_cast<T>(Denominator));
- }
- template <int64_t Denominator>
- constexpr int64_t ToFractionOr(int64_t fallback_value) const {
- return IsFinite() ? Unit_T::one_sided
- ? DivRoundPositiveToNearest(value_, Denominator)
- : DivRoundToNearest(value_, Denominator)
- : fallback_value;
- }
- template <int64_t Factor, typename T = int64_t>
- constexpr typename std::enable_if<std::is_integral<T>::value, T>::type
- ToMultiple() const {
- RTC_DCHECK_GE(ToValue(), std::numeric_limits<T>::min() / Factor);
- RTC_DCHECK_LE(ToValue(), std::numeric_limits<T>::max() / Factor);
- return rtc::dchecked_cast<T>(ToValue() * Factor);
- }
- template <int64_t Factor, typename T>
- constexpr typename std::enable_if<std::is_floating_point<T>::value, T>::type
- ToMultiple() const {
- return ToValue<T>() * Factor;
- }
- explicit constexpr UnitBase(int64_t value) : value_(value) {}
- private:
- template <class RelativeUnit_T>
- friend class RelativeUnit;
- static inline constexpr int64_t PlusInfinityVal() {
- return std::numeric_limits<int64_t>::max();
- }
- static inline constexpr int64_t MinusInfinityVal() {
- return std::numeric_limits<int64_t>::min();
- }
- constexpr Unit_T& AsSubClassRef() { return static_cast<Unit_T&>(*this); }
- constexpr const Unit_T& AsSubClassRef() const {
- return static_cast<const Unit_T&>(*this);
- }
- // Assumes that n >= 0 and d > 0.
- static constexpr int64_t DivRoundPositiveToNearest(int64_t n, int64_t d) {
- return (n + d / 2) / d;
- }
- // Assumes that d > 0.
- static constexpr int64_t DivRoundToNearest(int64_t n, int64_t d) {
- return (n + (n >= 0 ? d / 2 : -d / 2)) / d;
- }
- int64_t value_;
- };
- // Extends UnitBase to provide operations for relative units, that is, units
- // that have a meaningful relation between values such that a += b is a
- // sensible thing to do. For a,b <- same unit.
- template <class Unit_T>
- class RelativeUnit : public UnitBase<Unit_T> {
- public:
- constexpr Unit_T Clamped(Unit_T min_value, Unit_T max_value) const {
- return std::max(min_value,
- std::min(UnitBase<Unit_T>::AsSubClassRef(), max_value));
- }
- constexpr void Clamp(Unit_T min_value, Unit_T max_value) {
- *this = Clamped(min_value, max_value);
- }
- constexpr Unit_T operator+(const Unit_T other) const {
- if (this->IsPlusInfinity() || other.IsPlusInfinity()) {
- RTC_DCHECK(!this->IsMinusInfinity());
- RTC_DCHECK(!other.IsMinusInfinity());
- return this->PlusInfinity();
- } else if (this->IsMinusInfinity() || other.IsMinusInfinity()) {
- RTC_DCHECK(!this->IsPlusInfinity());
- RTC_DCHECK(!other.IsPlusInfinity());
- return this->MinusInfinity();
- }
- return UnitBase<Unit_T>::FromValue(this->ToValue() + other.ToValue());
- }
- constexpr Unit_T operator-(const Unit_T other) const {
- if (this->IsPlusInfinity() || other.IsMinusInfinity()) {
- RTC_DCHECK(!this->IsMinusInfinity());
- RTC_DCHECK(!other.IsPlusInfinity());
- return this->PlusInfinity();
- } else if (this->IsMinusInfinity() || other.IsPlusInfinity()) {
- RTC_DCHECK(!this->IsPlusInfinity());
- RTC_DCHECK(!other.IsMinusInfinity());
- return this->MinusInfinity();
- }
- return UnitBase<Unit_T>::FromValue(this->ToValue() - other.ToValue());
- }
- constexpr Unit_T& operator+=(const Unit_T other) {
- *this = *this + other;
- return this->AsSubClassRef();
- }
- constexpr Unit_T& operator-=(const Unit_T other) {
- *this = *this - other;
- return this->AsSubClassRef();
- }
- constexpr double operator/(const Unit_T other) const {
- return UnitBase<Unit_T>::template ToValue<double>() /
- other.template ToValue<double>();
- }
- template <typename T>
- constexpr typename std::enable_if<std::is_arithmetic<T>::value, Unit_T>::type
- operator/(const T& scalar) const {
- return UnitBase<Unit_T>::FromValue(
- std::round(UnitBase<Unit_T>::template ToValue<int64_t>() / scalar));
- }
- constexpr Unit_T operator*(double scalar) const {
- return UnitBase<Unit_T>::FromValue(std::round(this->ToValue() * scalar));
- }
- constexpr Unit_T operator*(int64_t scalar) const {
- return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar);
- }
- constexpr Unit_T operator*(int32_t scalar) const {
- return UnitBase<Unit_T>::FromValue(this->ToValue() * scalar);
- }
- protected:
- using UnitBase<Unit_T>::UnitBase;
- };
- template <class Unit_T>
- inline constexpr Unit_T operator*(double scalar, RelativeUnit<Unit_T> other) {
- return other * scalar;
- }
- template <class Unit_T>
- inline constexpr Unit_T operator*(int64_t scalar, RelativeUnit<Unit_T> other) {
- return other * scalar;
- }
- template <class Unit_T>
- inline constexpr Unit_T operator*(int32_t scalar, RelativeUnit<Unit_T> other) {
- return other * scalar;
- }
- } // namespace rtc_units_impl
- } // namespace webrtc
- #endif // RTC_BASE_UNITS_UNIT_BASE_H_
|