123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402 |
- /*
- * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
- *
- * Use of this source code is governed by a BSD-style license
- * that can be found in the LICENSE file in the root of the source
- * tree. An additional intellectual property rights grant can be found
- * in the file PATENTS. All contributing project authors may
- * be found in the AUTHORS file in the root of the source tree.
- */
- #ifndef MODULES_RTP_RTCP_SOURCE_BYTE_IO_H_
- #define MODULES_RTP_RTCP_SOURCE_BYTE_IO_H_
- // This file contains classes for reading and writing integer types from/to
- // byte array representations. Signed/unsigned, partial (whole byte) sizes,
- // and big/little endian byte order is all supported.
- //
- // Usage examples:
- //
- // uint8_t* buffer = ...;
- //
- // // Read an unsigned 4 byte integer in big endian format
- // uint32_t val = ByteReader<uint32_t>::ReadBigEndian(buffer);
- //
- // // Read a signed 24-bit (3 byte) integer in little endian format
- // int32_t val = ByteReader<int32_t, 3>::ReadLittle(buffer);
- //
- // // Write an unsigned 8 byte integer in little endian format
- // ByteWriter<uint64_t>::WriteLittleEndian(buffer, val);
- //
- // Write an unsigned 40-bit (5 byte) integer in big endian format
- // ByteWriter<uint64_t, 5>::WriteBigEndian(buffer, val);
- //
- // These classes are implemented as recursive templetizations, inteded to make
- // it easy for the compiler to completely inline the reading/writing.
- #include <stdint.h>
- #include <limits>
- namespace webrtc {
- // According to ISO C standard ISO/IEC 9899, section 6.2.6.2 (2), the three
- // representations of signed integers allowed are two's complement, one's
- // complement and sign/magnitude. We can detect which is used by looking at
- // the two last bits of -1, which will be 11 in two's complement, 10 in one's
- // complement and 01 in sign/magnitude.
- // TODO(sprang): In the unlikely event that we actually need to support a
- // platform that doesn't use two's complement, implement conversion to/from
- // wire format.
- // Assume the if any one signed integer type is two's complement, then all
- // other will be too.
- static_assert(
- (-1 & 0x03) == 0x03,
- "Only two's complement representation of signed integers supported.");
- // Plain const char* won't work for static_assert, use #define instead.
- #define kSizeErrorMsg "Byte size must be less than or equal to data type size."
- // Utility class for getting the unsigned equivalent of a signed type.
- template <typename T>
- struct UnsignedOf;
- // Class for reading integers from a sequence of bytes.
- // T = type of integer, B = bytes to read, is_signed = true if signed integer.
- // If is_signed is true and B < sizeof(T), sign extension might be needed.
- template <typename T,
- unsigned int B = sizeof(T),
- bool is_signed = std::numeric_limits<T>::is_signed>
- class ByteReader;
- // Specialization of ByteReader for unsigned types.
- template <typename T, unsigned int B>
- class ByteReader<T, B, false> {
- public:
- static T ReadBigEndian(const uint8_t* data) {
- static_assert(B <= sizeof(T), kSizeErrorMsg);
- return InternalReadBigEndian(data);
- }
- static T ReadLittleEndian(const uint8_t* data) {
- static_assert(B <= sizeof(T), kSizeErrorMsg);
- return InternalReadLittleEndian(data);
- }
- private:
- static T InternalReadBigEndian(const uint8_t* data) {
- T val(0);
- for (unsigned int i = 0; i < B; ++i)
- val |= static_cast<T>(data[i]) << ((B - 1 - i) * 8);
- return val;
- }
- static T InternalReadLittleEndian(const uint8_t* data) {
- T val(0);
- for (unsigned int i = 0; i < B; ++i)
- val |= static_cast<T>(data[i]) << (i * 8);
- return val;
- }
- };
- // Specialization of ByteReader for signed types.
- template <typename T, unsigned int B>
- class ByteReader<T, B, true> {
- public:
- typedef typename UnsignedOf<T>::Type U;
- static T ReadBigEndian(const uint8_t* data) {
- U unsigned_val = ByteReader<T, B, false>::ReadBigEndian(data);
- if (B < sizeof(T))
- unsigned_val = SignExtend(unsigned_val);
- return ReinterpretAsSigned(unsigned_val);
- }
- static T ReadLittleEndian(const uint8_t* data) {
- U unsigned_val = ByteReader<T, B, false>::ReadLittleEndian(data);
- if (B < sizeof(T))
- unsigned_val = SignExtend(unsigned_val);
- return ReinterpretAsSigned(unsigned_val);
- }
- private:
- // As a hack to avoid implementation-specific or undefined behavior when
- // bit-shifting or casting signed integers, read as a signed equivalent
- // instead and convert to signed. This is safe since we have asserted that
- // two's complement for is used.
- static T ReinterpretAsSigned(U unsigned_val) {
- // An unsigned value with only the highest order bit set (ex 0x80).
- const U kUnsignedHighestBitMask = static_cast<U>(1)
- << ((sizeof(U) * 8) - 1);
- // A signed value with only the highest bit set. Since this is two's
- // complement form, we can use the min value from std::numeric_limits.
- const T kSignedHighestBitMask = std::numeric_limits<T>::min();
- T val;
- if ((unsigned_val & kUnsignedHighestBitMask) != 0) {
- // Casting is only safe when unsigned value can be represented in the
- // signed target type, so mask out highest bit and mask it back manually.
- val = static_cast<T>(unsigned_val & ~kUnsignedHighestBitMask);
- val |= kSignedHighestBitMask;
- } else {
- val = static_cast<T>(unsigned_val);
- }
- return val;
- }
- // If number of bytes is less than native data type (eg 24 bit, in int32_t),
- // and the most significant bit of the actual data is set, we must sign
- // extend the remaining byte(s) with ones so that the correct negative
- // number is retained.
- // Ex: 0x810A0B -> 0xFF810A0B, but 0x710A0B -> 0x00710A0B
- static U SignExtend(const U val) {
- const uint8_t kMsb = static_cast<uint8_t>(val >> ((B - 1) * 8));
- if ((kMsb & 0x80) != 0) {
- // Create a mask where all bits used by the B bytes are set to one,
- // for instance 0x00FFFFFF for B = 3. Bit-wise invert that mask (to
- // (0xFF000000 in the example above) and add it to the input value.
- // The "B % sizeof(T)" is a workaround to undefined values warnings for
- // B == sizeof(T), in which case this code won't be called anyway.
- const U kUsedBitsMask = (1 << ((B % sizeof(T)) * 8)) - 1;
- return ~kUsedBitsMask | val;
- }
- return val;
- }
- };
- // Class for writing integers to a sequence of bytes
- // T = type of integer, B = bytes to write
- template <typename T,
- unsigned int B = sizeof(T),
- bool is_signed = std::numeric_limits<T>::is_signed>
- class ByteWriter;
- // Specialization of ByteWriter for unsigned types.
- template <typename T, unsigned int B>
- class ByteWriter<T, B, false> {
- public:
- static void WriteBigEndian(uint8_t* data, T val) {
- static_assert(B <= sizeof(T), kSizeErrorMsg);
- for (unsigned int i = 0; i < B; ++i) {
- data[i] = val >> ((B - 1 - i) * 8);
- }
- }
- static void WriteLittleEndian(uint8_t* data, T val) {
- static_assert(B <= sizeof(T), kSizeErrorMsg);
- for (unsigned int i = 0; i < B; ++i) {
- data[i] = val >> (i * 8);
- }
- }
- };
- // Specialization of ByteWriter for signed types.
- template <typename T, unsigned int B>
- class ByteWriter<T, B, true> {
- public:
- typedef typename UnsignedOf<T>::Type U;
- static void WriteBigEndian(uint8_t* data, T val) {
- ByteWriter<U, B, false>::WriteBigEndian(data, ReinterpretAsUnsigned(val));
- }
- static void WriteLittleEndian(uint8_t* data, T val) {
- ByteWriter<U, B, false>::WriteLittleEndian(data,
- ReinterpretAsUnsigned(val));
- }
- private:
- static U ReinterpretAsUnsigned(T val) {
- // According to ISO C standard ISO/IEC 9899, section 6.3.1.3 (1, 2) a
- // conversion from signed to unsigned keeps the value if the new type can
- // represent it, and otherwise adds one more than the max value of T until
- // the value is in range. For two's complement, this fortunately means
- // that the bit-wise value will be intact. Thus, since we have asserted that
- // two's complement form is actually used, a simple cast is sufficient.
- return static_cast<U>(val);
- }
- };
- // ----- Below follows specializations of UnsignedOf utility class -----
- template <>
- struct UnsignedOf<int8_t> {
- typedef uint8_t Type;
- };
- template <>
- struct UnsignedOf<int16_t> {
- typedef uint16_t Type;
- };
- template <>
- struct UnsignedOf<int32_t> {
- typedef uint32_t Type;
- };
- template <>
- struct UnsignedOf<int64_t> {
- typedef uint64_t Type;
- };
- // ----- Below follows specializations for unsigned, B in { 1, 2, 4, 8 } -----
- // TODO(sprang): Check if these actually help or if generic cases will be
- // unrolled to and optimized to similar performance.
- // Specializations for single bytes
- template <typename T>
- class ByteReader<T, 1, false> {
- public:
- static T ReadBigEndian(const uint8_t* data) {
- static_assert(sizeof(T) == 1, kSizeErrorMsg);
- return data[0];
- }
- static T ReadLittleEndian(const uint8_t* data) {
- static_assert(sizeof(T) == 1, kSizeErrorMsg);
- return data[0];
- }
- };
- template <typename T>
- class ByteWriter<T, 1, false> {
- public:
- static void WriteBigEndian(uint8_t* data, T val) {
- static_assert(sizeof(T) == 1, kSizeErrorMsg);
- data[0] = val;
- }
- static void WriteLittleEndian(uint8_t* data, T val) {
- static_assert(sizeof(T) == 1, kSizeErrorMsg);
- data[0] = val;
- }
- };
- // Specializations for two byte words
- template <typename T>
- class ByteReader<T, 2, false> {
- public:
- static T ReadBigEndian(const uint8_t* data) {
- static_assert(sizeof(T) >= 2, kSizeErrorMsg);
- return (data[0] << 8) | data[1];
- }
- static T ReadLittleEndian(const uint8_t* data) {
- static_assert(sizeof(T) >= 2, kSizeErrorMsg);
- return data[0] | (data[1] << 8);
- }
- };
- template <typename T>
- class ByteWriter<T, 2, false> {
- public:
- static void WriteBigEndian(uint8_t* data, T val) {
- static_assert(sizeof(T) >= 2, kSizeErrorMsg);
- data[0] = val >> 8;
- data[1] = val;
- }
- static void WriteLittleEndian(uint8_t* data, T val) {
- static_assert(sizeof(T) >= 2, kSizeErrorMsg);
- data[0] = val;
- data[1] = val >> 8;
- }
- };
- // Specializations for four byte words.
- template <typename T>
- class ByteReader<T, 4, false> {
- public:
- static T ReadBigEndian(const uint8_t* data) {
- static_assert(sizeof(T) >= 4, kSizeErrorMsg);
- return (Get(data, 0) << 24) | (Get(data, 1) << 16) | (Get(data, 2) << 8) |
- Get(data, 3);
- }
- static T ReadLittleEndian(const uint8_t* data) {
- static_assert(sizeof(T) >= 4, kSizeErrorMsg);
- return Get(data, 0) | (Get(data, 1) << 8) | (Get(data, 2) << 16) |
- (Get(data, 3) << 24);
- }
- private:
- inline static T Get(const uint8_t* data, unsigned int index) {
- return static_cast<T>(data[index]);
- }
- };
- // Specializations for four byte words.
- template <typename T>
- class ByteWriter<T, 4, false> {
- public:
- static void WriteBigEndian(uint8_t* data, T val) {
- static_assert(sizeof(T) >= 4, kSizeErrorMsg);
- data[0] = val >> 24;
- data[1] = val >> 16;
- data[2] = val >> 8;
- data[3] = val;
- }
- static void WriteLittleEndian(uint8_t* data, T val) {
- static_assert(sizeof(T) >= 4, kSizeErrorMsg);
- data[0] = val;
- data[1] = val >> 8;
- data[2] = val >> 16;
- data[3] = val >> 24;
- }
- };
- // Specializations for eight byte words.
- template <typename T>
- class ByteReader<T, 8, false> {
- public:
- static T ReadBigEndian(const uint8_t* data) {
- static_assert(sizeof(T) >= 8, kSizeErrorMsg);
- return (Get(data, 0) << 56) | (Get(data, 1) << 48) | (Get(data, 2) << 40) |
- (Get(data, 3) << 32) | (Get(data, 4) << 24) | (Get(data, 5) << 16) |
- (Get(data, 6) << 8) | Get(data, 7);
- }
- static T ReadLittleEndian(const uint8_t* data) {
- static_assert(sizeof(T) >= 8, kSizeErrorMsg);
- return Get(data, 0) | (Get(data, 1) << 8) | (Get(data, 2) << 16) |
- (Get(data, 3) << 24) | (Get(data, 4) << 32) | (Get(data, 5) << 40) |
- (Get(data, 6) << 48) | (Get(data, 7) << 56);
- }
- private:
- inline static T Get(const uint8_t* data, unsigned int index) {
- return static_cast<T>(data[index]);
- }
- };
- template <typename T>
- class ByteWriter<T, 8, false> {
- public:
- static void WriteBigEndian(uint8_t* data, T val) {
- static_assert(sizeof(T) >= 8, kSizeErrorMsg);
- data[0] = val >> 56;
- data[1] = val >> 48;
- data[2] = val >> 40;
- data[3] = val >> 32;
- data[4] = val >> 24;
- data[5] = val >> 16;
- data[6] = val >> 8;
- data[7] = val;
- }
- static void WriteLittleEndian(uint8_t* data, T val) {
- static_assert(sizeof(T) >= 8, kSizeErrorMsg);
- data[0] = val;
- data[1] = val >> 8;
- data[2] = val >> 16;
- data[3] = val >> 24;
- data[4] = val >> 32;
- data[5] = val >> 40;
- data[6] = val >> 48;
- data[7] = val >> 56;
- }
- };
- } // namespace webrtc
- #endif // MODULES_RTP_RTCP_SOURCE_BYTE_IO_H_
|