queue.h 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488
  1. /* $OpenBSD: queue.h,v 1.16 2000/09/07 19:47:59 art Exp $ */
  2. /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */
  3. /*
  4. * Copyright (c) 1991, 1993
  5. * The Regents of the University of California. All rights reserved.
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions
  9. * are met:
  10. * 1. Redistributions of source code must retain the above copyright
  11. * notice, this list of conditions and the following disclaimer.
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in the
  14. * documentation and/or other materials provided with the distribution.
  15. * 3. Neither the name of the University nor the names of its contributors
  16. * may be used to endorse or promote products derived from this software
  17. * without specific prior written permission.
  18. *
  19. * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
  20. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  21. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  22. * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
  23. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  24. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  25. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  26. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  27. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  28. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  29. * SUCH DAMAGE.
  30. *
  31. * @(#)queue.h 8.5 (Berkeley) 8/20/94
  32. */
  33. #ifndef _SYS_QUEUE_H_
  34. #define _SYS_QUEUE_H_
  35. /*
  36. * This file defines five types of data structures: singly-linked lists,
  37. * lists, simple queues, tail queues, and circular queues.
  38. *
  39. *
  40. * A singly-linked list is headed by a single forward pointer. The elements
  41. * are singly linked for minimum space and pointer manipulation overhead at
  42. * the expense of O(n) removal for arbitrary elements. New elements can be
  43. * added to the list after an existing element or at the head of the list.
  44. * Elements being removed from the head of the list should use the explicit
  45. * macro for this purpose for optimum efficiency. A singly-linked list may
  46. * only be traversed in the forward direction. Singly-linked lists are ideal
  47. * for applications with large datasets and few or no removals or for
  48. * implementing a LIFO queue.
  49. *
  50. * A list is headed by a single forward pointer (or an array of forward
  51. * pointers for a hash table header). The elements are doubly linked
  52. * so that an arbitrary element can be removed without a need to
  53. * traverse the list. New elements can be added to the list before
  54. * or after an existing element or at the head of the list. A list
  55. * may only be traversed in the forward direction.
  56. *
  57. * A simple queue is headed by a pair of pointers, one the head of the
  58. * list and the other to the tail of the list. The elements are singly
  59. * linked to save space, so elements can only be removed from the
  60. * head of the list. New elements can be added to the list before or after
  61. * an existing element, at the head of the list, or at the end of the
  62. * list. A simple queue may only be traversed in the forward direction.
  63. *
  64. * A tail queue is headed by a pair of pointers, one to the head of the
  65. * list and the other to the tail of the list. The elements are doubly
  66. * linked so that an arbitrary element can be removed without a need to
  67. * traverse the list. New elements can be added to the list before or
  68. * after an existing element, at the head of the list, or at the end of
  69. * the list. A tail queue may be traversed in either direction.
  70. *
  71. * A circle queue is headed by a pair of pointers, one to the head of the
  72. * list and the other to the tail of the list. The elements are doubly
  73. * linked so that an arbitrary element can be removed without a need to
  74. * traverse the list. New elements can be added to the list before or after
  75. * an existing element, at the head of the list, or at the end of the list.
  76. * A circle queue may be traversed in either direction, but has a more
  77. * complex end of list detection.
  78. *
  79. * For details on the use of these macros, see the queue(3) manual page.
  80. */
  81. /*
  82. * Singly-linked List definitions.
  83. */
  84. #define SLIST_HEAD(name, type) \
  85. struct name { \
  86. struct type *slh_first; /* first element */ \
  87. }
  88. #define SLIST_HEAD_INITIALIZER(head) \
  89. { NULL }
  90. #ifndef WIN32
  91. #define SLIST_ENTRY(type) \
  92. struct { \
  93. struct type *sle_next; /* next element */ \
  94. }
  95. #endif
  96. /*
  97. * Singly-linked List access methods.
  98. */
  99. #define SLIST_FIRST(head) ((head)->slh_first)
  100. #define SLIST_END(head) NULL
  101. #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head))
  102. #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
  103. #define SLIST_FOREACH(var, head, field) \
  104. for((var) = SLIST_FIRST(head); \
  105. (var) != SLIST_END(head); \
  106. (var) = SLIST_NEXT(var, field))
  107. /*
  108. * Singly-linked List functions.
  109. */
  110. #define SLIST_INIT(head) { \
  111. SLIST_FIRST(head) = SLIST_END(head); \
  112. }
  113. #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
  114. (elm)->field.sle_next = (slistelm)->field.sle_next; \
  115. (slistelm)->field.sle_next = (elm); \
  116. } while (0)
  117. #define SLIST_INSERT_HEAD(head, elm, field) do { \
  118. (elm)->field.sle_next = (head)->slh_first; \
  119. (head)->slh_first = (elm); \
  120. } while (0)
  121. #define SLIST_REMOVE_HEAD(head, field) do { \
  122. (head)->slh_first = (head)->slh_first->field.sle_next; \
  123. } while (0)
  124. /*
  125. * List definitions.
  126. */
  127. #define LIST_HEAD(name, type) \
  128. struct name { \
  129. struct type *lh_first; /* first element */ \
  130. }
  131. #define LIST_HEAD_INITIALIZER(head) \
  132. { NULL }
  133. #define LIST_ENTRY(type) \
  134. struct { \
  135. struct type *le_next; /* next element */ \
  136. struct type **le_prev; /* address of previous next element */ \
  137. }
  138. /*
  139. * List access methods
  140. */
  141. #define LIST_FIRST(head) ((head)->lh_first)
  142. #define LIST_END(head) NULL
  143. #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head))
  144. #define LIST_NEXT(elm, field) ((elm)->field.le_next)
  145. #define LIST_FOREACH(var, head, field) \
  146. for((var) = LIST_FIRST(head); \
  147. (var)!= LIST_END(head); \
  148. (var) = LIST_NEXT(var, field))
  149. /*
  150. * List functions.
  151. */
  152. #define LIST_INIT(head) do { \
  153. LIST_FIRST(head) = LIST_END(head); \
  154. } while (0)
  155. #define LIST_INSERT_AFTER(listelm, elm, field) do { \
  156. if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \
  157. (listelm)->field.le_next->field.le_prev = \
  158. &(elm)->field.le_next; \
  159. (listelm)->field.le_next = (elm); \
  160. (elm)->field.le_prev = &(listelm)->field.le_next; \
  161. } while (0)
  162. #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
  163. (elm)->field.le_prev = (listelm)->field.le_prev; \
  164. (elm)->field.le_next = (listelm); \
  165. *(listelm)->field.le_prev = (elm); \
  166. (listelm)->field.le_prev = &(elm)->field.le_next; \
  167. } while (0)
  168. #define LIST_INSERT_HEAD(head, elm, field) do { \
  169. if (((elm)->field.le_next = (head)->lh_first) != NULL) \
  170. (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
  171. (head)->lh_first = (elm); \
  172. (elm)->field.le_prev = &(head)->lh_first; \
  173. } while (0)
  174. #define LIST_REMOVE(elm, field) do { \
  175. if ((elm)->field.le_next != NULL) \
  176. (elm)->field.le_next->field.le_prev = \
  177. (elm)->field.le_prev; \
  178. *(elm)->field.le_prev = (elm)->field.le_next; \
  179. } while (0)
  180. #define LIST_REPLACE(elm, elm2, field) do { \
  181. if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \
  182. (elm2)->field.le_next->field.le_prev = \
  183. &(elm2)->field.le_next; \
  184. (elm2)->field.le_prev = (elm)->field.le_prev; \
  185. *(elm2)->field.le_prev = (elm2); \
  186. } while (0)
  187. /*
  188. * Simple queue definitions.
  189. */
  190. #define SIMPLEQ_HEAD(name, type) \
  191. struct name { \
  192. struct type *sqh_first; /* first element */ \
  193. struct type **sqh_last; /* addr of last next element */ \
  194. }
  195. #define SIMPLEQ_HEAD_INITIALIZER(head) \
  196. { NULL, &(head).sqh_first }
  197. #define SIMPLEQ_ENTRY(type) \
  198. struct { \
  199. struct type *sqe_next; /* next element */ \
  200. }
  201. /*
  202. * Simple queue access methods.
  203. */
  204. #define SIMPLEQ_FIRST(head) ((head)->sqh_first)
  205. #define SIMPLEQ_END(head) NULL
  206. #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head))
  207. #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next)
  208. #define SIMPLEQ_FOREACH(var, head, field) \
  209. for((var) = SIMPLEQ_FIRST(head); \
  210. (var) != SIMPLEQ_END(head); \
  211. (var) = SIMPLEQ_NEXT(var, field))
  212. /*
  213. * Simple queue functions.
  214. */
  215. #define SIMPLEQ_INIT(head) do { \
  216. (head)->sqh_first = NULL; \
  217. (head)->sqh_last = &(head)->sqh_first; \
  218. } while (0)
  219. #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \
  220. if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \
  221. (head)->sqh_last = &(elm)->field.sqe_next; \
  222. (head)->sqh_first = (elm); \
  223. } while (0)
  224. #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \
  225. (elm)->field.sqe_next = NULL; \
  226. *(head)->sqh_last = (elm); \
  227. (head)->sqh_last = &(elm)->field.sqe_next; \
  228. } while (0)
  229. #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
  230. if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
  231. (head)->sqh_last = &(elm)->field.sqe_next; \
  232. (listelm)->field.sqe_next = (elm); \
  233. } while (0)
  234. #define SIMPLEQ_REMOVE_HEAD(head, elm, field) do { \
  235. if (((head)->sqh_first = (elm)->field.sqe_next) == NULL) \
  236. (head)->sqh_last = &(head)->sqh_first; \
  237. } while (0)
  238. /*
  239. * Tail queue definitions.
  240. */
  241. #define TAILQ_HEAD(name, type) \
  242. struct name { \
  243. struct type *tqh_first; /* first element */ \
  244. struct type **tqh_last; /* addr of last next element */ \
  245. }
  246. #define TAILQ_HEAD_INITIALIZER(head) \
  247. { NULL, &(head).tqh_first }
  248. #define TAILQ_ENTRY(type) \
  249. struct { \
  250. struct type *tqe_next; /* next element */ \
  251. struct type **tqe_prev; /* address of previous next element */ \
  252. }
  253. /*
  254. * tail queue access methods
  255. */
  256. #define TAILQ_FIRST(head) ((head)->tqh_first)
  257. #define TAILQ_END(head) NULL
  258. #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
  259. #define TAILQ_LAST(head, headname) \
  260. (*(((struct headname *)((head)->tqh_last))->tqh_last))
  261. /* XXX */
  262. #define TAILQ_PREV(elm, headname, field) \
  263. (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
  264. #define TAILQ_EMPTY(head) \
  265. (TAILQ_FIRST(head) == TAILQ_END(head))
  266. #define TAILQ_FOREACH(var, head, field) \
  267. for((var) = TAILQ_FIRST(head); \
  268. (var) != TAILQ_END(head); \
  269. (var) = TAILQ_NEXT(var, field))
  270. #define TAILQ_FOREACH_REVERSE(var, head, field, headname) \
  271. for((var) = TAILQ_LAST(head, headname); \
  272. (var) != TAILQ_END(head); \
  273. (var) = TAILQ_PREV(var, headname, field))
  274. /*
  275. * Tail queue functions.
  276. */
  277. #define TAILQ_INIT(head) do { \
  278. (head)->tqh_first = NULL; \
  279. (head)->tqh_last = &(head)->tqh_first; \
  280. } while (0)
  281. #define TAILQ_INSERT_HEAD(head, elm, field) do { \
  282. if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \
  283. (head)->tqh_first->field.tqe_prev = \
  284. &(elm)->field.tqe_next; \
  285. else \
  286. (head)->tqh_last = &(elm)->field.tqe_next; \
  287. (head)->tqh_first = (elm); \
  288. (elm)->field.tqe_prev = &(head)->tqh_first; \
  289. } while (0)
  290. #define TAILQ_INSERT_TAIL(head, elm, field) do { \
  291. (elm)->field.tqe_next = NULL; \
  292. (elm)->field.tqe_prev = (head)->tqh_last; \
  293. *(head)->tqh_last = (elm); \
  294. (head)->tqh_last = &(elm)->field.tqe_next; \
  295. } while (0)
  296. #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
  297. if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
  298. (elm)->field.tqe_next->field.tqe_prev = \
  299. &(elm)->field.tqe_next; \
  300. else \
  301. (head)->tqh_last = &(elm)->field.tqe_next; \
  302. (listelm)->field.tqe_next = (elm); \
  303. (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \
  304. } while (0)
  305. #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
  306. (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
  307. (elm)->field.tqe_next = (listelm); \
  308. *(listelm)->field.tqe_prev = (elm); \
  309. (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \
  310. } while (0)
  311. #define TAILQ_REMOVE(head, elm, field) do { \
  312. if (((elm)->field.tqe_next) != NULL) \
  313. (elm)->field.tqe_next->field.tqe_prev = \
  314. (elm)->field.tqe_prev; \
  315. else \
  316. (head)->tqh_last = (elm)->field.tqe_prev; \
  317. *(elm)->field.tqe_prev = (elm)->field.tqe_next; \
  318. } while (0)
  319. #define TAILQ_REPLACE(head, elm, elm2, field) do { \
  320. if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \
  321. (elm2)->field.tqe_next->field.tqe_prev = \
  322. &(elm2)->field.tqe_next; \
  323. else \
  324. (head)->tqh_last = &(elm2)->field.tqe_next; \
  325. (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \
  326. *(elm2)->field.tqe_prev = (elm2); \
  327. } while (0)
  328. /*
  329. * Circular queue definitions.
  330. */
  331. #define CIRCLEQ_HEAD(name, type) \
  332. struct name { \
  333. struct type *cqh_first; /* first element */ \
  334. struct type *cqh_last; /* last element */ \
  335. }
  336. #define CIRCLEQ_HEAD_INITIALIZER(head) \
  337. { CIRCLEQ_END(&head), CIRCLEQ_END(&head) }
  338. #define CIRCLEQ_ENTRY(type) \
  339. struct { \
  340. struct type *cqe_next; /* next element */ \
  341. struct type *cqe_prev; /* previous element */ \
  342. }
  343. /*
  344. * Circular queue access methods
  345. */
  346. #define CIRCLEQ_FIRST(head) ((head)->cqh_first)
  347. #define CIRCLEQ_LAST(head) ((head)->cqh_last)
  348. #define CIRCLEQ_END(head) ((void *)(head))
  349. #define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next)
  350. #define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev)
  351. #define CIRCLEQ_EMPTY(head) \
  352. (CIRCLEQ_FIRST(head) == CIRCLEQ_END(head))
  353. #define CIRCLEQ_FOREACH(var, head, field) \
  354. for((var) = CIRCLEQ_FIRST(head); \
  355. (var) != CIRCLEQ_END(head); \
  356. (var) = CIRCLEQ_NEXT(var, field))
  357. #define CIRCLEQ_FOREACH_REVERSE(var, head, field) \
  358. for((var) = CIRCLEQ_LAST(head); \
  359. (var) != CIRCLEQ_END(head); \
  360. (var) = CIRCLEQ_PREV(var, field))
  361. /*
  362. * Circular queue functions.
  363. */
  364. #define CIRCLEQ_INIT(head) do { \
  365. (head)->cqh_first = CIRCLEQ_END(head); \
  366. (head)->cqh_last = CIRCLEQ_END(head); \
  367. } while (0)
  368. #define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \
  369. (elm)->field.cqe_next = (listelm)->field.cqe_next; \
  370. (elm)->field.cqe_prev = (listelm); \
  371. if ((listelm)->field.cqe_next == CIRCLEQ_END(head)) \
  372. (head)->cqh_last = (elm); \
  373. else \
  374. (listelm)->field.cqe_next->field.cqe_prev = (elm); \
  375. (listelm)->field.cqe_next = (elm); \
  376. } while (0)
  377. #define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \
  378. (elm)->field.cqe_next = (listelm); \
  379. (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \
  380. if ((listelm)->field.cqe_prev == CIRCLEQ_END(head)) \
  381. (head)->cqh_first = (elm); \
  382. else \
  383. (listelm)->field.cqe_prev->field.cqe_next = (elm); \
  384. (listelm)->field.cqe_prev = (elm); \
  385. } while (0)
  386. #define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \
  387. (elm)->field.cqe_next = (head)->cqh_first; \
  388. (elm)->field.cqe_prev = CIRCLEQ_END(head); \
  389. if ((head)->cqh_last == CIRCLEQ_END(head)) \
  390. (head)->cqh_last = (elm); \
  391. else \
  392. (head)->cqh_first->field.cqe_prev = (elm); \
  393. (head)->cqh_first = (elm); \
  394. } while (0)
  395. #define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \
  396. (elm)->field.cqe_next = CIRCLEQ_END(head); \
  397. (elm)->field.cqe_prev = (head)->cqh_last; \
  398. if ((head)->cqh_first == CIRCLEQ_END(head)) \
  399. (head)->cqh_first = (elm); \
  400. else \
  401. (head)->cqh_last->field.cqe_next = (elm); \
  402. (head)->cqh_last = (elm); \
  403. } while (0)
  404. #define CIRCLEQ_REMOVE(head, elm, field) do { \
  405. if ((elm)->field.cqe_next == CIRCLEQ_END(head)) \
  406. (head)->cqh_last = (elm)->field.cqe_prev; \
  407. else \
  408. (elm)->field.cqe_next->field.cqe_prev = \
  409. (elm)->field.cqe_prev; \
  410. if ((elm)->field.cqe_prev == CIRCLEQ_END(head)) \
  411. (head)->cqh_first = (elm)->field.cqe_next; \
  412. else \
  413. (elm)->field.cqe_prev->field.cqe_next = \
  414. (elm)->field.cqe_next; \
  415. } while (0)
  416. #define CIRCLEQ_REPLACE(head, elm, elm2, field) do { \
  417. if (((elm2)->field.cqe_next = (elm)->field.cqe_next) == \
  418. CIRCLEQ_END(head)) \
  419. (head).cqh_last = (elm2); \
  420. else \
  421. (elm2)->field.cqe_next->field.cqe_prev = (elm2); \
  422. if (((elm2)->field.cqe_prev = (elm)->field.cqe_prev) == \
  423. CIRCLEQ_END(head)) \
  424. (head).cqh_first = (elm2); \
  425. else \
  426. (elm2)->field.cqe_prev->field.cqe_next = (elm2); \
  427. } while (0)
  428. #endif /* !_SYS_QUEUE_H_ */