// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This file specifies a recursive data storage class called Value intended for // storing settings and other persistable data. // // A Value represents something that can be stored in JSON or passed to/from // JavaScript. As such, it is NOT a generalized variant type, since only the // types supported by JavaScript/JSON are supported. // // IN PARTICULAR this means that there is no support for int64_t or unsigned // numbers. Writing JSON with such types would violate the spec. If you need // something like this, either use a double or make a string value containing // the number you want. // // NOTE: A Value parameter that is always a Value::STRING should just be passed // as a std::string. Similarly for Values that are always Value::DICTIONARY // (should be flat_map), Value::LIST (should be std::vector), et cetera. #ifndef BASE_VALUES_H_ #define BASE_VALUES_H_ #include #include #include #include #include #include #include #include #include "base/base_export.h" #include "base/containers/checked_iterators.h" #include "base/containers/checked_range.h" #include "base/containers/flat_map.h" #include "base/containers/span.h" #include "base/strings/string16.h" #include "base/strings/string_piece.h" #include "base/value_iterators.h" #include "third_party/abseil-cpp/absl/types/variant.h" namespace base { class DictionaryValue; class ListValue; class Value; // The Value class is the base class for Values. A Value can be instantiated // via passing the appropriate type or backing storage to the constructor. // // See the file-level comment above for more information. // // base::Value is currently in the process of being refactored. Design doc: // https://docs.google.com/document/d/1uDLu5uTRlCWePxQUEHc8yNQdEoE1BDISYdpggWEABnw // // Previously (which is how most code that currently exists is written), Value // used derived types to implement the individual data types, and base::Value // was just a base class to refer to them. This required everything be heap // allocated. // // OLD WAY: // // std::unique_ptr GetFoo() { // std::unique_ptr dict; // dict->SetString("mykey", foo); // return dict; // } // // The new design makes base::Value a variant type that holds everything in // a union. It is now recommended to pass by value with std::move rather than // use heap allocated values. The DictionaryValue and ListValue subclasses // exist only as a compatibility shim that we're in the process of removing. // // NEW WAY: // // base::Value GetFoo() { // base::Value dict(base::Value::Type::DICTIONARY); // dict.SetKey("mykey", base::Value(foo)); // return dict; // } class BASE_EXPORT Value { public: using BlobStorage = std::vector; using DictStorage = flat_map>; using ListStorage = std::vector; using ListView = CheckedContiguousRange; using ConstListView = CheckedContiguousConstRange; enum class Type : unsigned char { NONE = 0, BOOLEAN, INTEGER, DOUBLE, STRING, BINARY, DICTIONARY, LIST, // TODO(crbug.com/859477): Remove once root cause is found. DEAD // Note: Do not add more types. See the file-level comment above for why. }; // For situations where you want to keep ownership of your buffer, this // factory method creates a new BinaryValue by copying the contents of the // buffer that's passed in. // DEPRECATED, use std::make_unique(const BlobStorage&) instead. // TODO(crbug.com/646113): Delete this and migrate callsites. static std::unique_ptr CreateWithCopiedBuffer(const char* buffer, size_t size); // Adaptors for converting from the old way to the new way and vice versa. static Value FromUniquePtrValue(std::unique_ptr val); static std::unique_ptr ToUniquePtrValue(Value val); static const DictionaryValue& AsDictionaryValue(const Value& val); static const ListValue& AsListValue(const Value& val); Value() noexcept; Value(Value&& that) noexcept; // Value's copy constructor and copy assignment operator are deleted. Use this // to obtain a deep copy explicitly. Value Clone() const; explicit Value(Type type); explicit Value(bool in_bool); explicit Value(int in_int); explicit Value(double in_double); // Value(const char*) and Value(const char16*) are required despite // Value(StringPiece) and Value(StringPiece16) because otherwise the // compiler will choose the Value(bool) constructor for these arguments. // Value(std::string&&) allow for efficient move construction. explicit Value(const char* in_string); explicit Value(StringPiece in_string); explicit Value(std::string&& in_string) noexcept; explicit Value(const char16* in_string16); explicit Value(StringPiece16 in_string16); explicit Value(const std::vector& in_blob); explicit Value(base::span in_blob); explicit Value(BlobStorage&& in_blob) noexcept; explicit Value(const DictStorage& in_dict); explicit Value(DictStorage&& in_dict) noexcept; explicit Value(span in_list); explicit Value(ListStorage&& in_list) noexcept; Value& operator=(Value&& that) noexcept; Value(const Value&) = delete; Value& operator=(const Value&) = delete; ~Value(); // Returns the name for a given |type|. static const char* GetTypeName(Type type); // Returns the type of the value stored by the current Value object. Type type() const { return static_cast(data_.index()); } // Returns true if the current object represents a given type. bool is_none() const { return type() == Type::NONE; } bool is_bool() const { return type() == Type::BOOLEAN; } bool is_int() const { return type() == Type::INTEGER; } bool is_double() const { return type() == Type::DOUBLE; } bool is_string() const { return type() == Type::STRING; } bool is_blob() const { return type() == Type::BINARY; } bool is_dict() const { return type() == Type::DICTIONARY; } bool is_list() const { return type() == Type::LIST; } // These will all CHECK that the type matches. bool GetBool() const; int GetInt() const; double GetDouble() const; // Implicitly converts from int if necessary. const std::string& GetString() const; std::string& GetString(); const BlobStorage& GetBlob() const; // Returns the Values in a list as a view. The mutable overload allows for // modification of the underlying values, but does not allow changing the // structure of the list. If this is desired, use TakeList(), perform the // operations, and return the list back to the Value via move assignment. ListView GetList(); ConstListView GetList() const; // Transfers ownership of the underlying list to the caller. Subsequent // calls to GetList() will return an empty list. // Note: This requires that type() is Type::LIST. ListStorage TakeList(); // Appends |value| to the end of the list. // Note: These CHECK that type() is Type::LIST. void Append(bool value); void Append(int value); void Append(double value); void Append(const char* value); void Append(StringPiece value); void Append(std::string&& value); void Append(const char16* value); void Append(StringPiece16 value); void Append(Value&& value); // Inserts |value| before |pos|. // Note: This CHECK that type() is Type::LIST. CheckedContiguousIterator Insert( CheckedContiguousConstIterator pos, Value&& value); // Erases the Value pointed to by |iter|. Returns false if |iter| is out of // bounds. // Note: This requires that type() is Type::LIST. bool EraseListIter(CheckedContiguousConstIterator iter); // Erases all Values that compare equal to |val|. Returns the number of // deleted Values. // Note: This requires that type() is Type::LIST. size_t EraseListValue(const Value& val); // Erases all Values for which |pred| returns true. Returns the number of // deleted Values. // Note: This requires that type() is Type::LIST. template size_t EraseListValueIf(Predicate pred) { return base::EraseIf(list(), pred); } // Erases all Values from the list. // Note: This requires that type() is Type::LIST. void ClearList(); // |FindKey| looks up |key| in the underlying dictionary. If found, it returns // a pointer to the element. Otherwise it returns nullptr. // returned. Callers are expected to perform a check against null before using // the pointer. // Note: This requires that type() is Type::DICTIONARY. // // Example: // auto* found = FindKey("foo"); Value* FindKey(StringPiece key); const Value* FindKey(StringPiece key) const; // |FindKeyOfType| is similar to |FindKey|, but it also requires the found // value to have type |type|. If no type is found, or the found value is of a // different type nullptr is returned. // Callers are expected to perform a check against null before using the // pointer. // Note: This requires that type() is Type::DICTIONARY. // // Example: // auto* found = FindKey("foo", Type::DOUBLE); Value* FindKeyOfType(StringPiece key, Type type); const Value* FindKeyOfType(StringPiece key, Type type) const; // These are convenience forms of |FindKey|. They return |base::nullopt| if // the value is not found or doesn't have the type specified in the // function's name. base::Optional FindBoolKey(StringPiece key) const; base::Optional FindIntKey(StringPiece key) const; // Note FindDoubleKey() will auto-convert INTEGER keys to their double // value, for consistency with GetDouble(). base::Optional FindDoubleKey(StringPiece key) const; // |FindStringKey| returns |nullptr| if value is not found or not a string. const std::string* FindStringKey(StringPiece key) const; std::string* FindStringKey(StringPiece key); // Returns nullptr is value is not found or not a binary. const BlobStorage* FindBlobKey(StringPiece key) const; // Returns nullptr if value is not found or not a dictionary. const Value* FindDictKey(StringPiece key) const; Value* FindDictKey(StringPiece key); // Returns nullptr if value is not found or not a list. const Value* FindListKey(StringPiece key) const; Value* FindListKey(StringPiece key); // |SetKey| looks up |key| in the underlying dictionary and sets the mapped // value to |value|. If |key| could not be found, a new element is inserted. // A pointer to the modified item is returned. // Note: This requires that type() is Type::DICTIONARY. // Note: Prefer SetKey() for simple values. // // Example: // SetKey("foo", std::move(myvalue)); Value* SetKey(StringPiece key, Value&& value); // This overload results in a performance improvement for std::string&&. Value* SetKey(std::string&& key, Value&& value); // This overload is necessary to avoid ambiguity for const char* arguments. Value* SetKey(const char* key, Value&& value); // |SetKey| looks up |key| in the underlying dictionary and associates // a corresponding Value() constructed from the second parameter. Compared // to SetKey(), this avoids un-necessary temporary Value() creation, as well // ambiguities in the value type. Value* SetBoolKey(StringPiece key, bool val); Value* SetIntKey(StringPiece key, int val); Value* SetDoubleKey(StringPiece key, double val); Value* SetStringKey(StringPiece key, StringPiece val); Value* SetStringKey(StringPiece key, StringPiece16 val); // NOTE: The following two overloads are provided as performance / code // generation optimizations. Value* SetStringKey(StringPiece key, const char* val); Value* SetStringKey(StringPiece key, std::string&& val); // This attempts to remove the value associated with |key|. In case of // failure, e.g. the key does not exist, false is returned and the underlying // dictionary is not changed. In case of success, |key| is deleted from the // dictionary and the method returns true. // Note: This requires that type() is Type::DICTIONARY. // // Example: // bool success = dict.RemoveKey("foo"); bool RemoveKey(StringPiece key); // This attempts to extract the value associated with |key|. In case of // failure, e.g. the key does not exist, nullopt is returned and the // underlying dictionary is not changed. In case of success, |key| is deleted // from the dictionary and the method returns the extracted Value. // Note: This requires that type() is Type::DICTIONARY. // // Example: // Optional maybe_value = dict.ExtractKey("foo"); Optional ExtractKey(StringPiece key); // Searches a hierarchy of dictionary values for a given value. If a path // of dictionaries exist, returns the item at that path. If any of the path // components do not exist or if any but the last path components are not // dictionaries, returns nullptr. // // The type of the leaf Value is not checked. // // Implementation note: This can't return an iterator because the iterator // will actually be into another Value, so it can't be compared to iterators // from this one (in particular, the DictItems().end() iterator). // // This version takes a StringPiece for the path, using dots as separators. // Example: // auto* found = FindPath("foo.bar"); Value* FindPath(StringPiece path); const Value* FindPath(StringPiece path) const; // There are also deprecated versions that take the path parameter // as either a std::initializer_list or a // span. The latter is useful to use a // std::vector as a parameter but creates huge dynamic // allocations and should be avoided! // Note: If there is only one component in the path, use FindKey() instead. // // Example: // std::vector components = ... // auto* found = FindPath(components); Value* FindPath(std::initializer_list path); Value* FindPath(span path); const Value* FindPath(std::initializer_list path) const; const Value* FindPath(span path) const; // Like FindPath() but will only return the value if the leaf Value type // matches the given type. Will return nullptr otherwise. // Note: Prefer FindPath() for simple values. // // Note: If there is only one component in the path, use FindKeyOfType() // instead for slightly better performance. Value* FindPathOfType(StringPiece path, Type type); const Value* FindPathOfType(StringPiece path, Type type) const; // Convenience accessors used when the expected type of a value is known. // Similar to FindKey() but accepts paths instead of keys. base::Optional FindBoolPath(StringPiece path) const; base::Optional FindIntPath(StringPiece path) const; base::Optional FindDoublePath(StringPiece path) const; const std::string* FindStringPath(StringPiece path) const; std::string* FindStringPath(StringPiece path); const BlobStorage* FindBlobPath(StringPiece path) const; Value* FindDictPath(StringPiece path); const Value* FindDictPath(StringPiece path) const; Value* FindListPath(StringPiece path); const Value* FindListPath(StringPiece path) const; // The following forms are deprecated too, use the ones that take the path // as a single StringPiece instead. Value* FindPathOfType(std::initializer_list path, Type type); Value* FindPathOfType(span path, Type type); const Value* FindPathOfType(std::initializer_list path, Type type) const; const Value* FindPathOfType(span path, Type type) const; // Sets the given path, expanding and creating dictionary keys as necessary. // // If the current value is not a dictionary, the function returns nullptr. If // path components do not exist, they will be created. If any but the last // components matches a value that is not a dictionary, the function will fail // (it will not overwrite the value) and return nullptr. The last path // component will be unconditionally overwritten if it exists, and created if // it doesn't. // // Example: // value.SetPath("foo.bar", std::move(myvalue)); // // Note: If there is only one component in the path, use SetKey() instead. // Note: Using SetPath() might be more convenient and efficient. Value* SetPath(StringPiece path, Value&& value); // These setters are more convenient and efficient than the corresponding // SetPath(...) call. Value* SetBoolPath(StringPiece path, bool value); Value* SetIntPath(StringPiece path, int value); Value* SetDoublePath(StringPiece path, double value); Value* SetStringPath(StringPiece path, StringPiece value); Value* SetStringPath(StringPiece path, const char* value); Value* SetStringPath(StringPiece path, std::string&& value); Value* SetStringPath(StringPiece path, StringPiece16 value); // Deprecated: use the ones that take a StringPiece path parameter instead. Value* SetPath(std::initializer_list path, Value&& value); Value* SetPath(span path, Value&& value); // Tries to remove a Value at the given path. // // If the current value is not a dictionary or any path component does not // exist, this operation fails, leaves underlying Values untouched and returns // |false|. In case intermediate dictionaries become empty as a result of this // path removal, they will be removed as well. // Note: If there is only one component in the path, use ExtractKey() instead. // // Example: // bool success = value.RemovePath("foo.bar"); bool RemovePath(StringPiece path); // Tries to extract a Value at the given path. // // If the current value is not a dictionary or any path component does not // exist, this operation fails, leaves underlying Values untouched and returns // nullopt. In case intermediate dictionaries become empty as a result of this // path removal, they will be removed as well. Returns the extracted value on // success. // Note: If there is only one component in the path, use ExtractKey() instead. // // Example: // Optional maybe_value = value.ExtractPath("foo.bar"); Optional ExtractPath(StringPiece path); using dict_iterator_proxy = detail::dict_iterator_proxy; using const_dict_iterator_proxy = detail::const_dict_iterator_proxy; // |DictItems| returns a proxy object that exposes iterators to the underlying // dictionary. These are intended for iteration over all items in the // dictionary and are compatible with for-each loops and standard library // algorithms. // // Unlike with std::map, a range-for over the non-const version of DictItems() // will range over items of type pair, so code of // the form // for (auto kv : my_value.DictItems()) // Mutate(kv.second); // will actually alter |my_value| in place (if it isn't const). // // Note: These CHECK that type() is Type::DICTIONARY. dict_iterator_proxy DictItems(); const_dict_iterator_proxy DictItems() const; // Returns the size of the dictionary, and if the dictionary is empty. // Note: These CHECK that type() is Type::DICTIONARY. size_t DictSize() const; bool DictEmpty() const; // Merge |dictionary| into this value. This is done recursively, i.e. any // sub-dictionaries will be merged as well. In case of key collisions, the // passed in dictionary takes precedence and data already present will be // replaced. Values within |dictionary| are deep-copied, so |dictionary| may // be freed any time after this call. // Note: This requires that type() and dictionary->type() is Type::DICTIONARY. void MergeDictionary(const Value* dictionary); // These methods allow the convenient retrieval of the contents of the Value. // If the current object can be converted into the given type, the value is // returned through the |out_value| parameter and true is returned; // otherwise, false is returned and |out_value| is unchanged. // DEPRECATED, use GetBool() instead. bool GetAsBoolean(bool* out_value) const; // DEPRECATED, use GetInt() instead. bool GetAsInteger(int* out_value) const; // DEPRECATED, use GetDouble() instead. bool GetAsDouble(double* out_value) const; // DEPRECATED, use GetString() instead. bool GetAsString(std::string* out_value) const; bool GetAsString(string16* out_value) const; bool GetAsString(const Value** out_value) const; bool GetAsString(StringPiece* out_value) const; // ListValue::From is the equivalent for std::unique_ptr conversions. // DEPRECATED, use GetList() instead. bool GetAsList(ListValue** out_value); bool GetAsList(const ListValue** out_value) const; // DictionaryValue::From is the equivalent for std::unique_ptr conversions. bool GetAsDictionary(DictionaryValue** out_value); bool GetAsDictionary(const DictionaryValue** out_value) const; // Note: Do not add more types. See the file-level comment above for why. // This creates a deep copy of the entire Value tree, and returns a pointer // to the copy. The caller gets ownership of the copy, of course. // Subclasses return their own type directly in their overrides; // this works because C++ supports covariant return types. // DEPRECATED, use Value::Clone() instead. // TODO(crbug.com/646113): Delete this and migrate callsites. Value* DeepCopy() const; // DEPRECATED, use Value::Clone() instead. // TODO(crbug.com/646113): Delete this and migrate callsites. std::unique_ptr CreateDeepCopy() const; // Comparison operators so that Values can easily be used with standard // library algorithms and associative containers. BASE_EXPORT friend bool operator==(const Value& lhs, const Value& rhs); BASE_EXPORT friend bool operator!=(const Value& lhs, const Value& rhs); BASE_EXPORT friend bool operator<(const Value& lhs, const Value& rhs); BASE_EXPORT friend bool operator>(const Value& lhs, const Value& rhs); BASE_EXPORT friend bool operator<=(const Value& lhs, const Value& rhs); BASE_EXPORT friend bool operator>=(const Value& lhs, const Value& rhs); // Compares if two Value objects have equal contents. // DEPRECATED, use operator==(const Value& lhs, const Value& rhs) instead. // TODO(crbug.com/646113): Delete this and migrate callsites. bool Equals(const Value* other) const; // Estimates dynamic memory usage. Requires tracing support // (enable_base_tracing gn flag), otherwise always returns 0. See // base/trace_event/memory_usage_estimator.h for more info. size_t EstimateMemoryUsage() const; protected: // Checked convenience accessors for dict and list. const DictStorage& dict() const { return absl::get(data_); } DictStorage& dict() { return absl::get(data_); } const ListStorage& list() const { return absl::get(data_); } ListStorage& list() { return absl::get(data_); } private: // Special case for doubles, which are aligned to 8 bytes on some // 32-bit architectures. In this case, a simple declaration as a // double member would make the whole union 8 byte-aligned, which // would also force 4 bytes of wasted padding space before it in // the Value layout. // // To override this, store the value as an array of 32-bit integers, and // perform the appropriate bit casts when reading / writing to it. using DoubleStorage = struct { alignas(4) char v[sizeof(double)]; }; // Internal constructors, allowing the simplify the implementation of Clone(). explicit Value(absl::monostate); explicit Value(DoubleStorage storage); friend class ValuesTest_SizeOfValue_Test; double AsDoubleInternal() const; // NOTE: Using a movable reference here is done for performance (it avoids // creating + moving + destroying a temporary unique ptr). Value* SetKeyInternal(StringPiece key, std::unique_ptr&& val_ptr); Value* SetPathInternal(StringPiece path, std::unique_ptr&& value_ptr); absl::variant data_; }; // DictionaryValue provides a key-value dictionary with (optional) "path" // parsing for recursive access; see the comment at the top of the file. Keys // are |std::string|s and should be UTF-8 encoded. class BASE_EXPORT DictionaryValue : public Value { public: using const_iterator = DictStorage::const_iterator; using iterator = DictStorage::iterator; // Returns |value| if it is a dictionary, nullptr otherwise. static std::unique_ptr From(std::unique_ptr value); DictionaryValue(); explicit DictionaryValue(const DictStorage& in_dict); explicit DictionaryValue(DictStorage&& in_dict) noexcept; // Returns true if the current dictionary has a value for the given key. // DEPRECATED, use Value::FindKey(key) instead. bool HasKey(StringPiece key) const; // Returns the number of Values in this dictionary. size_t size() const { return dict().size(); } // Returns whether the dictionary is empty. bool empty() const { return dict().empty(); } // Clears any current contents of this dictionary. void Clear(); // Sets the Value associated with the given path starting from this object. // A path has the form "" or "..[...]", where "." indexes // into the next DictionaryValue down. Obviously, "." can't be used // within a key, but there are no other restrictions on keys. // If the key at any step of the way doesn't exist, or exists but isn't // a DictionaryValue, a new DictionaryValue will be created and attached // to the path in that location. |in_value| must be non-null. // Returns a pointer to the inserted value. // DEPRECATED, use Value::SetPath(path, value) instead. Value* Set(StringPiece path, std::unique_ptr in_value); // Convenience forms of Set(). These methods will replace any existing // value at that path, even if it has a different type. // DEPRECATED, use Value::SetBoolKey() or Value::SetBoolPath(). Value* SetBoolean(StringPiece path, bool in_value); // DEPRECATED, use Value::SetIntPath(). Value* SetInteger(StringPiece path, int in_value); // DEPRECATED, use Value::SetDoublePath(). Value* SetDouble(StringPiece path, double in_value); // DEPRECATED, use Value::SetStringPath(). Value* SetString(StringPiece path, StringPiece in_value); // DEPRECATED, use Value::SetStringPath(). Value* SetString(StringPiece path, const string16& in_value); // DEPRECATED, use Value::SetPath() or Value::SetDictPath() DictionaryValue* SetDictionary(StringPiece path, std::unique_ptr in_value); // DEPRECATED, use Value::SetPath() or Value::SetListPath() ListValue* SetList(StringPiece path, std::unique_ptr in_value); // Like Set(), but without special treatment of '.'. This allows e.g. URLs to // be used as paths. // DEPRECATED, use Value::SetKey(key, value) instead. Value* SetWithoutPathExpansion(StringPiece key, std::unique_ptr in_value); // Gets the Value associated with the given path starting from this object. // A path has the form "" or "..[...]", where "." indexes // into the next DictionaryValue down. If the path can be resolved // successfully, the value for the last key in the path will be returned // through the |out_value| parameter, and the function will return true. // Otherwise, it will return false and |out_value| will be untouched. // Note that the dictionary always owns the value that's returned. // |out_value| is optional and will only be set if non-NULL. // DEPRECATED, use Value::FindPath(path) instead. bool Get(StringPiece path, const Value** out_value) const; // DEPRECATED, use Value::FindPath(path) instead. bool Get(StringPiece path, Value** out_value); // These are convenience forms of Get(). The value will be retrieved // and the return value will be true if the path is valid and the value at // the end of the path can be returned in the form specified. // |out_value| is optional and will only be set if non-NULL. // DEPRECATED, use Value::FindBoolPath(path) instead. bool GetBoolean(StringPiece path, bool* out_value) const; // DEPRECATED, use Value::FindIntPath(path) instead. bool GetInteger(StringPiece path, int* out_value) const; // Values of both type Type::INTEGER and Type::DOUBLE can be obtained as // doubles. // DEPRECATED, use Value::FindDoublePath(path). bool GetDouble(StringPiece path, double* out_value) const; // DEPRECATED, use Value::FindStringPath(path) instead. bool GetString(StringPiece path, std::string* out_value) const; // DEPRECATED, use Value::FindStringPath(path) instead. bool GetString(StringPiece path, string16* out_value) const; // DEPRECATED, use Value::FindString(path) and IsAsciiString() instead. bool GetStringASCII(StringPiece path, std::string* out_value) const; // DEPRECATED, use Value::FindBlobPath(path) instead. bool GetBinary(StringPiece path, const Value** out_value) const; // DEPRECATED, use Value::FindBlobPath(path) instead. bool GetBinary(StringPiece path, Value** out_value); // DEPRECATED, use Value::FindPath(path) and Value's Dictionary API instead. bool GetDictionary(StringPiece path, const DictionaryValue** out_value) const; // DEPRECATED, use Value::FindPath(path) and Value's Dictionary API instead. bool GetDictionary(StringPiece path, DictionaryValue** out_value); // DEPRECATED, use Value::FindPath(path) and Value::GetList() instead. bool GetList(StringPiece path, const ListValue** out_value) const; // DEPRECATED, use Value::FindPath(path) and Value::GetList() instead. bool GetList(StringPiece path, ListValue** out_value); // Like Get(), but without special treatment of '.'. This allows e.g. URLs to // be used as paths. // DEPRECATED, use Value::FindKey(key) instead. bool GetWithoutPathExpansion(StringPiece key, const Value** out_value) const; // DEPRECATED, use Value::FindKey(key) instead. bool GetWithoutPathExpansion(StringPiece key, Value** out_value); // DEPRECATED, use Value::FindBoolKey(key) instead. bool GetBooleanWithoutPathExpansion(StringPiece key, bool* out_value) const; // DEPRECATED, use Value::FindIntKey(key) instead. bool GetIntegerWithoutPathExpansion(StringPiece key, int* out_value) const; // DEPRECATED, use Value::FindDoubleKey(key) instead. bool GetDoubleWithoutPathExpansion(StringPiece key, double* out_value) const; // DEPRECATED, use Value::FindStringKey(key) instead. bool GetStringWithoutPathExpansion(StringPiece key, std::string* out_value) const; // DEPRECATED, use Value::FindStringKey(key) and UTF8ToUTF16() instead. bool GetStringWithoutPathExpansion(StringPiece key, string16* out_value) const; // DEPRECATED, use Value::FindDictKey(key) instead. bool GetDictionaryWithoutPathExpansion( StringPiece key, const DictionaryValue** out_value) const; // DEPRECATED, use Value::FindDictKey(key) instead. bool GetDictionaryWithoutPathExpansion(StringPiece key, DictionaryValue** out_value); // DEPRECATED, use Value::FindListKey(key) instead. bool GetListWithoutPathExpansion(StringPiece key, const ListValue** out_value) const; // DEPRECATED, use Value::FindListKey(key) instead. bool GetListWithoutPathExpansion(StringPiece key, ListValue** out_value); // Removes the Value with the specified path from this dictionary (or one // of its child dictionaries, if the path is more than just a local key). // If |out_value| is non-NULL, the removed Value will be passed out via // |out_value|. If |out_value| is NULL, the removed value will be deleted. // This method returns true if |path| is a valid path; otherwise it will // return false and the DictionaryValue object will be unchanged. // DEPRECATED, use Value::RemovePath(path) or Value::ExtractPath(path) // instead. bool Remove(StringPiece path, std::unique_ptr* out_value); // Like Remove(), but without special treatment of '.'. This allows e.g. URLs // to be used as paths. // DEPRECATED, use Value::RemoveKey(key) or Value::ExtractKey(key) instead. bool RemoveWithoutPathExpansion(StringPiece key, std::unique_ptr* out_value); // Removes a path, clearing out all dictionaries on |path| that remain empty // after removing the value at |path|. // DEPRECATED, use Value::RemovePath(path) or Value::ExtractPath(path) // instead. bool RemovePath(StringPiece path, std::unique_ptr* out_value); using Value::RemovePath; // DictionaryValue::RemovePath shadows otherwise. // Makes a copy of |this| but doesn't include empty dictionaries and lists in // the copy. This never returns NULL, even if |this| itself is empty. std::unique_ptr DeepCopyWithoutEmptyChildren() const; // Swaps contents with the |other| dictionary. void Swap(DictionaryValue* other); // This class provides an iterator over both keys and values in the // dictionary. It can't be used to modify the dictionary. // DEPRECATED, use Value::DictItems() instead. class BASE_EXPORT Iterator { public: explicit Iterator(const DictionaryValue& target); Iterator(const Iterator& other); ~Iterator(); bool IsAtEnd() const { return it_ == target_.end(); } void Advance() { ++it_; } const std::string& key() const { return it_->first; } const Value& value() const { return *it_->second; } private: const DictionaryValue& target_; DictStorage::const_iterator it_; }; // Iteration. // DEPRECATED, use Value::DictItems() instead. iterator begin() { return dict().begin(); } iterator end() { return dict().end(); } // DEPRECATED, use Value::DictItems() instead. const_iterator begin() const { return dict().begin(); } const_iterator end() const { return dict().end(); } // DEPRECATED, use Value::Clone() instead. // TODO(crbug.com/646113): Delete this and migrate callsites. DictionaryValue* DeepCopy() const; // DEPRECATED, use Value::Clone() instead. // TODO(crbug.com/646113): Delete this and migrate callsites. std::unique_ptr CreateDeepCopy() const; }; // This type of Value represents a list of other Value values. class BASE_EXPORT ListValue : public Value { public: using const_iterator = ListView::const_iterator; using iterator = ListView::iterator; // Returns |value| if it is a list, nullptr otherwise. static std::unique_ptr From(std::unique_ptr value); ListValue(); explicit ListValue(span in_list); explicit ListValue(ListStorage&& in_list) noexcept; // Clears the contents of this ListValue // DEPRECATED, use ClearList() instead. void Clear(); // Returns the number of Values in this list. // DEPRECATED, use GetList()::size() instead. size_t GetSize() const { return list().size(); } // Returns whether the list is empty. // DEPRECATED, use GetList()::empty() instead. bool empty() const { return list().empty(); } // Reserves storage for at least |n| values. // DEPRECATED, first construct a base::Value::ListStorage and use // base::Value::ListStorage::reserve() instead. void Reserve(size_t n); // Sets the list item at the given index to be the Value specified by // the value given. If the index beyond the current end of the list, null // Values will be used to pad out the list. // Returns true if successful, or false if the index was negative or // the value is a null pointer. // DEPRECATED, use GetList()::operator[] instead. bool Set(size_t index, std::unique_ptr in_value); // Gets the Value at the given index. Modifies |out_value| (and returns true) // only if the index falls within the current list range. // Note that the list always owns the Value passed out via |out_value|. // |out_value| is optional and will only be set if non-NULL. // DEPRECATED, use GetList()::operator[] instead. bool Get(size_t index, const Value** out_value) const; bool Get(size_t index, Value** out_value); // Convenience forms of Get(). Modifies |out_value| (and returns true) // only if the index is valid and the Value at that index can be returned // in the specified form. // |out_value| is optional and will only be set if non-NULL. // DEPRECATED, use GetList()::operator[]::GetBool() instead. bool GetBoolean(size_t index, bool* out_value) const; // DEPRECATED, use GetList()::operator[]::GetInt() instead. bool GetInteger(size_t index, int* out_value) const; // Values of both type Type::INTEGER and Type::DOUBLE can be obtained as // doubles. // DEPRECATED, use GetList()::operator[]::GetDouble() instead. bool GetDouble(size_t index, double* out_value) const; // DEPRECATED, use GetList()::operator[]::GetString() instead. bool GetString(size_t index, std::string* out_value) const; bool GetString(size_t index, string16* out_value) const; bool GetDictionary(size_t index, const DictionaryValue** out_value) const; bool GetDictionary(size_t index, DictionaryValue** out_value); using Value::GetList; // DEPRECATED, use GetList()::operator[]::GetList() instead. bool GetList(size_t index, const ListValue** out_value) const; bool GetList(size_t index, ListValue** out_value); // Removes the Value with the specified index from this list. // If |out_value| is non-NULL, the removed Value AND ITS OWNERSHIP will be // passed out via |out_value|. If |out_value| is NULL, the removed value will // be deleted. This method returns true if |index| is valid; otherwise // it will return false and the ListValue object will be unchanged. // DEPRECATED, use GetList()::erase() instead. bool Remove(size_t index, std::unique_ptr* out_value); // Removes the first instance of |value| found in the list, if any, and // deletes it. |index| is the location where |value| was found. Returns false // if not found. // DEPRECATED, use GetList()::erase() instead. bool Remove(const Value& value, size_t* index); // Removes the element at |iter|. If |out_value| is NULL, the value will be // deleted, otherwise ownership of the value is passed back to the caller. // Returns an iterator pointing to the location of the element that // followed the erased element. // DEPRECATED, use GetList()::erase() instead. iterator Erase(iterator iter, std::unique_ptr* out_value); using Value::Append; // Appends a Value to the end of the list. // DEPRECATED, use Value::Append() instead. void Append(std::unique_ptr in_value); // Convenience forms of Append. // DEPRECATED, use Value::Append() instead. void AppendBoolean(bool in_value); void AppendInteger(int in_value); void AppendDouble(double in_value); void AppendString(StringPiece in_value); void AppendString(const string16& in_value); // DEPRECATED, use Value::Append() in a loop instead. void AppendStrings(const std::vector& in_values); void AppendStrings(const std::vector& in_values); // Appends a Value if it's not already present. Returns true if successful, // or false if the value was already // DEPRECATED, use std::find() with Value::Append() instead. bool AppendIfNotPresent(std::unique_ptr in_value); using Value::Insert; // Insert a Value at index. // Returns true if successful, or false if the index was out of range. // DEPRECATED, use Value::Insert() instead. bool Insert(size_t index, std::unique_ptr in_value); // Searches for the first instance of |value| in the list using the Equals // method of the Value type. // Returns a const_iterator to the found item or to end() if none exists. // DEPRECATED, use std::find() instead. const_iterator Find(const Value& value) const; // Swaps contents with the |other| list. // DEPRECATED, use GetList()::swap() instead. void Swap(ListValue* other); // Iteration. // DEPRECATED, use GetList()::begin() instead. iterator begin() { return GetList().begin(); } // DEPRECATED, use GetList()::end() instead. iterator end() { return GetList().end(); } // DEPRECATED, use GetList()::begin() instead. const_iterator begin() const { return GetList().begin(); } // DEPRECATED, use GetList()::end() instead. const_iterator end() const { return GetList().end(); } // DEPRECATED, use Value::Clone() instead. // TODO(crbug.com/646113): Delete this and migrate callsites. ListValue* DeepCopy() const; // DEPRECATED, use Value::Clone() instead. // TODO(crbug.com/646113): Delete this and migrate callsites. std::unique_ptr CreateDeepCopy() const; }; // This interface is implemented by classes that know how to serialize // Value objects. class BASE_EXPORT ValueSerializer { public: virtual ~ValueSerializer(); virtual bool Serialize(const Value& root) = 0; }; // This interface is implemented by classes that know how to deserialize Value // objects. class BASE_EXPORT ValueDeserializer { public: virtual ~ValueDeserializer(); // This method deserializes the subclass-specific format into a Value object. // If the return value is non-NULL, the caller takes ownership of returned // Value. // // If the return value is nullptr, and if |error_code| is non-nullptr, // |*error_code| will be set to an integer value representing the underlying // error. See "enum ErrorCode" below for more detail about the integer value. // // If |error_message| is non-nullptr, it will be filled in with a formatted // error message including the location of the error if appropriate. virtual std::unique_ptr Deserialize(int* error_code, std::string* error_message) = 0; // The integer-valued error codes form four groups: // - The value 0 means no error. // - Values between 1 and 999 inclusive mean an error in the data (i.e. // content). The bytes being deserialized are not in the right format. // - Values 1000 and above mean an error in the metadata (i.e. context). The // file could not be read, the network is down, etc. // - Negative values are reserved. enum ErrorCode { kErrorCodeNoError = 0, // kErrorCodeInvalidFormat is a generic error code for "the data is not in // the right format". Subclasses of ValueDeserializer may return other // values for more specific errors. kErrorCodeInvalidFormat = 1, // kErrorCodeFirstMetadataError is the minimum value (inclusive) of the // range of metadata errors. kErrorCodeFirstMetadataError = 1000, }; // The |error_code| argument can be one of the ErrorCode values, but it is // not restricted to only being 0, 1 or 1000. Subclasses of ValueDeserializer // can define their own error code values. static inline bool ErrorCodeIsDataError(int error_code) { return (kErrorCodeInvalidFormat <= error_code) && (error_code < kErrorCodeFirstMetadataError); } }; // Stream operator so Values can be used in assertion statements. In order that // gtest uses this operator to print readable output on test failures, we must // override each specific type. Otherwise, the default template implementation // is preferred over an upcast. BASE_EXPORT std::ostream& operator<<(std::ostream& out, const Value& value); BASE_EXPORT inline std::ostream& operator<<(std::ostream& out, const DictionaryValue& value) { return out << static_cast(value); } BASE_EXPORT inline std::ostream& operator<<(std::ostream& out, const ListValue& value) { return out << static_cast(value); } // Stream operator so that enum class Types can be used in log statements. BASE_EXPORT std::ostream& operator<<(std::ostream& out, const Value::Type& type); } // namespace base #endif // BASE_VALUES_H_