// Copyright 2016 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_OPTIONAL_H_ #define BASE_OPTIONAL_H_ #include #include #include #include "base/check.h" #include "base/template_util.h" namespace base { // Specification: // http://en.cppreference.com/w/cpp/utility/optional/nullopt_t struct nullopt_t { constexpr explicit nullopt_t(int) {} }; // Specification: // http://en.cppreference.com/w/cpp/utility/optional/nullopt constexpr nullopt_t nullopt(0); // Forward declaration, which is refered by following helpers. template class Optional; namespace internal { struct DummyUnionMember {}; template ::value> struct OptionalStorageBase { // Provide non-defaulted default ctor to make sure it's not deleted by // non-trivial T::T() in the union. constexpr OptionalStorageBase() : dummy_() {} template constexpr explicit OptionalStorageBase(in_place_t, Args&&... args) : is_populated_(true), value_(std::forward(args)...) {} // When T is not trivially destructible we must call its // destructor before deallocating its memory. // Note that this hides the (implicitly declared) move constructor, which // would be used for constexpr move constructor in OptionalStorage. // It is needed iff T is trivially move constructible. However, the current // is_trivially_{copy,move}_constructible implementation requires // is_trivially_destructible (which looks a bug, cf: // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=51452 and // http://cplusplus.github.io/LWG/lwg-active.html#2116), so it is not // necessary for this case at the moment. Please see also the destructor // comment in "is_trivially_destructible = true" specialization below. ~OptionalStorageBase() { if (is_populated_) value_.~T(); } template void Init(Args&&... args) { DCHECK(!is_populated_); ::new (std::addressof(value_)) T(std::forward(args)...); is_populated_ = true; } bool is_populated_ = false; union { // |dummy_| exists so that the union will always be initialized, even when // it doesn't contain a value. Union members must be initialized for the // constructor to be 'constexpr'. Having a special trivial class for it is // better than e.g. using char, because the latter will have to be // zero-initialized, and the compiler can't optimize this write away, since // it assumes this might be a programmer's invariant. This can also cause // problems for conservative GC in Oilpan. Compiler is free to split shared // and non-shared parts of the union in separate memory locations (or // registers). If conservative GC is triggered at this moment, the stack // scanning routine won't find the correct object pointed from // Optional. This dummy valueless struct lets the compiler know // that we don't care about the value of this union member. DummyUnionMember dummy_; T value_; }; }; template struct OptionalStorageBase { // Provide non-defaulted default ctor to make sure it's not deleted by // non-trivial T::T() in the union. constexpr OptionalStorageBase() : dummy_() {} template constexpr explicit OptionalStorageBase(in_place_t, Args&&... args) : is_populated_(true), value_(std::forward(args)...) {} // When T is trivially destructible (i.e. its destructor does nothing) there // is no need to call it. Implicitly defined destructor is trivial, because // both members (bool and union containing only variants which are trivially // destructible) are trivially destructible. // Explicitly-defaulted destructor is also trivial, but do not use it here, // because it hides the implicit move constructor. It is needed to implement // constexpr move constructor in OptionalStorage iff T is trivially move // constructible. Note that, if T is trivially move constructible, the move // constructor of OptionalStorageBase is also implicitly defined and it is // trivially move constructor. If T is not trivially move constructible, // "not declaring move constructor without destructor declaration" here means // "delete move constructor", which works because any move constructor of // OptionalStorage will not refer to it in that case. template void Init(Args&&... args) { DCHECK(!is_populated_); ::new (std::addressof(value_)) T(std::forward(args)...); is_populated_ = true; } bool is_populated_ = false; union { // |dummy_| exists so that the union will always be initialized, even when // it doesn't contain a value. Union members must be initialized for the // constructor to be 'constexpr'. Having a special trivial class for it is // better than e.g. using char, because the latter will have to be // zero-initialized, and the compiler can't optimize this write away, since // it assumes this might be a programmer's invariant. This can also cause // problems for conservative GC in Oilpan. Compiler is free to split shared // and non-shared parts of the union in separate memory locations (or // registers). If conservative GC is triggered at this moment, the stack // scanning routine won't find the correct object pointed from // Optional. This dummy valueless struct lets the compiler know // that we don't care about the value of this union member. DummyUnionMember dummy_; T value_; }; }; // Implement conditional constexpr copy and move constructors. These are // constexpr if is_trivially_{copy,move}_constructible::value is true // respectively. If each is true, the corresponding constructor is defined as // "= default;", which generates a constexpr constructor (In this case, // the condition of constexpr-ness is satisfied because the base class also has // compiler generated constexpr {copy,move} constructors). Note that // placement-new is prohibited in constexpr. template ::value, bool = std::is_trivially_move_constructible::value> struct OptionalStorage : OptionalStorageBase { // This is no trivially {copy,move} constructible case. Other cases are // defined below as specializations. // Accessing the members of template base class requires explicit // declaration. using OptionalStorageBase::is_populated_; using OptionalStorageBase::value_; using OptionalStorageBase::Init; // Inherit constructors (specifically, the in_place constructor). using OptionalStorageBase::OptionalStorageBase; // User defined constructor deletes the default constructor. // Define it explicitly. OptionalStorage() = default; OptionalStorage(const OptionalStorage& other) { if (other.is_populated_) Init(other.value_); } OptionalStorage(OptionalStorage&& other) noexcept( std::is_nothrow_move_constructible::value) { if (other.is_populated_) Init(std::move(other.value_)); } }; template struct OptionalStorage : OptionalStorageBase { using OptionalStorageBase::is_populated_; using OptionalStorageBase::value_; using OptionalStorageBase::Init; using OptionalStorageBase::OptionalStorageBase; OptionalStorage() = default; OptionalStorage(const OptionalStorage& other) = default; OptionalStorage(OptionalStorage&& other) noexcept( std::is_nothrow_move_constructible::value) { if (other.is_populated_) Init(std::move(other.value_)); } }; template struct OptionalStorage : OptionalStorageBase { using OptionalStorageBase::is_populated_; using OptionalStorageBase::value_; using OptionalStorageBase::Init; using OptionalStorageBase::OptionalStorageBase; OptionalStorage() = default; OptionalStorage(OptionalStorage&& other) = default; OptionalStorage(const OptionalStorage& other) { if (other.is_populated_) Init(other.value_); } }; template struct OptionalStorage : OptionalStorageBase { // If both trivially {copy,move} constructible are true, it is not necessary // to use user-defined constructors. So, just inheriting constructors // from the base class works. using OptionalStorageBase::OptionalStorageBase; }; // Base class to support conditionally usable copy-/move- constructors // and assign operators. template class OptionalBase { // This class provides implementation rather than public API, so everything // should be hidden. Often we use composition, but we cannot in this case // because of C++ language restriction. protected: constexpr OptionalBase() = default; constexpr OptionalBase(const OptionalBase& other) = default; constexpr OptionalBase(OptionalBase&& other) = default; template constexpr explicit OptionalBase(in_place_t, Args&&... args) : storage_(in_place, std::forward(args)...) {} // Implementation of converting constructors. template explicit OptionalBase(const OptionalBase& other) { if (other.storage_.is_populated_) storage_.Init(other.storage_.value_); } template explicit OptionalBase(OptionalBase&& other) { if (other.storage_.is_populated_) storage_.Init(std::move(other.storage_.value_)); } ~OptionalBase() = default; OptionalBase& operator=(const OptionalBase& other) { CopyAssign(other); return *this; } OptionalBase& operator=(OptionalBase&& other) noexcept( std::is_nothrow_move_assignable::value&& std::is_nothrow_move_constructible::value) { MoveAssign(std::move(other)); return *this; } template void CopyAssign(const OptionalBase& other) { if (other.storage_.is_populated_) InitOrAssign(other.storage_.value_); else FreeIfNeeded(); } template void MoveAssign(OptionalBase&& other) { if (other.storage_.is_populated_) InitOrAssign(std::move(other.storage_.value_)); else FreeIfNeeded(); } template void InitOrAssign(U&& value) { if (storage_.is_populated_) storage_.value_ = std::forward(value); else storage_.Init(std::forward(value)); } void FreeIfNeeded() { if (!storage_.is_populated_) return; storage_.value_.~T(); storage_.is_populated_ = false; } // For implementing conversion, allow access to other typed OptionalBase // class. template friend class OptionalBase; OptionalStorage storage_; }; // The following {Copy,Move}{Constructible,Assignable} structs are helpers to // implement constructor/assign-operator overloading. Specifically, if T is // is not movable but copyable, Optional's move constructor should not // participate in overload resolution. This inheritance trick implements that. template struct CopyConstructible {}; template <> struct CopyConstructible { constexpr CopyConstructible() = default; constexpr CopyConstructible(const CopyConstructible&) = delete; constexpr CopyConstructible(CopyConstructible&&) = default; CopyConstructible& operator=(const CopyConstructible&) = default; CopyConstructible& operator=(CopyConstructible&&) = default; }; template struct MoveConstructible {}; template <> struct MoveConstructible { constexpr MoveConstructible() = default; constexpr MoveConstructible(const MoveConstructible&) = default; constexpr MoveConstructible(MoveConstructible&&) = delete; MoveConstructible& operator=(const MoveConstructible&) = default; MoveConstructible& operator=(MoveConstructible&&) = default; }; template struct CopyAssignable {}; template <> struct CopyAssignable { constexpr CopyAssignable() = default; constexpr CopyAssignable(const CopyAssignable&) = default; constexpr CopyAssignable(CopyAssignable&&) = default; CopyAssignable& operator=(const CopyAssignable&) = delete; CopyAssignable& operator=(CopyAssignable&&) = default; }; template struct MoveAssignable {}; template <> struct MoveAssignable { constexpr MoveAssignable() = default; constexpr MoveAssignable(const MoveAssignable&) = default; constexpr MoveAssignable(MoveAssignable&&) = default; MoveAssignable& operator=(const MoveAssignable&) = default; MoveAssignable& operator=(MoveAssignable&&) = delete; }; // Helper to conditionally enable converting constructors and assign operators. template using IsConvertibleFromOptional = disjunction&>, std::is_constructible&>, std::is_constructible&&>, std::is_constructible&&>, std::is_convertible&, T>, std::is_convertible&, T>, std::is_convertible&&, T>, std::is_convertible&&, T>>; template using IsAssignableFromOptional = disjunction, std::is_assignable&>, std::is_assignable&>, std::is_assignable&&>, std::is_assignable&&>>; // Forward compatibility for C++17. // Introduce one more deeper nested namespace to avoid leaking using std::swap. namespace swappable_impl { using std::swap; struct IsSwappableImpl { // Tests if swap can be called. Check(0) returns true_type iff swap // is available for T. Otherwise, Check's overload resolution falls back // to Check(...) declared below thanks to SFINAE, so returns false_type. template static auto Check(int) -> decltype(swap(std::declval(), std::declval()), std::true_type()); template static std::false_type Check(...); }; } // namespace swappable_impl template struct IsSwappable : decltype(swappable_impl::IsSwappableImpl::Check(0)) {}; // Forward compatibility for C++20. template using RemoveCvRefT = std::remove_cv_t>; } // namespace internal // On Windows, by default, empty-base class optimization does not work, // which means even if the base class is empty struct, it still consumes one // byte for its body. __declspec(empty_bases) enables the optimization. // cf) // https://blogs.msdn.microsoft.com/vcblog/2016/03/30/optimizing-the-layout-of-empty-base-classes-in-vs2015-update-2-3/ #ifdef OS_WIN #define OPTIONAL_DECLSPEC_EMPTY_BASES __declspec(empty_bases) #else #define OPTIONAL_DECLSPEC_EMPTY_BASES #endif // base::Optional is a Chromium version of the C++17 optional class: // std::optional documentation: // http://en.cppreference.com/w/cpp/utility/optional // Chromium documentation: // https://chromium.googlesource.com/chromium/src/+/master/docs/optional.md // // These are the differences between the specification and the implementation: // - Constructors do not use 'constexpr' as it is a C++14 extension. // - 'constexpr' might be missing in some places for reasons specified locally. // - No exceptions are thrown, because they are banned from Chromium. // Marked noexcept for only move constructor and move assign operators. // - All the non-members are in the 'base' namespace instead of 'std'. // // Note that T cannot have a constructor T(Optional) etc. Optional checks // T's constructor (specifically via IsConvertibleFromOptional), and in the // check whether T can be constructible from Optional, which is recursive // so it does not work. As of Feb 2018, std::optional C++17 implementation in // both clang and gcc has same limitation. MSVC SFINAE looks to have different // behavior, but anyway it reports an error, too. template class OPTIONAL_DECLSPEC_EMPTY_BASES Optional : public internal::OptionalBase, public internal::CopyConstructible::value>, public internal::MoveConstructible::value>, public internal::CopyAssignable::value && std::is_copy_assignable::value>, public internal::MoveAssignable::value && std::is_move_assignable::value> { private: // Disable some versions of T that are ill-formed. // See: https://timsong-cpp.github.io/cppwp/n4659/optional#syn-1 static_assert( !std::is_same, in_place_t>::value, "instantiation of base::Optional with in_place_t is ill-formed"); static_assert(!std::is_same, nullopt_t>::value, "instantiation of base::Optional with nullopt_t is ill-formed"); static_assert( !std::is_reference::value, "instantiation of base::Optional with a reference type is ill-formed"); // See: https://timsong-cpp.github.io/cppwp/n4659/optional#optional-3 static_assert(std::is_destructible::value, "instantiation of base::Optional with a non-destructible type " "is ill-formed"); // Arrays are explicitly disallowed because for arrays of known bound // is_destructible is of undefined value. // See: https://en.cppreference.com/w/cpp/types/is_destructible static_assert( !std::is_array::value, "instantiation of base::Optional with an array type is ill-formed"); public: #undef OPTIONAL_DECLSPEC_EMPTY_BASES using value_type = T; // Defer default/copy/move constructor implementation to OptionalBase. constexpr Optional() = default; constexpr Optional(const Optional& other) = default; constexpr Optional(Optional&& other) noexcept( std::is_nothrow_move_constructible::value) = default; constexpr Optional(nullopt_t) {} // NOLINT(runtime/explicit) // Converting copy constructor. "explicit" only if // std::is_convertible::value is false. It is implemented by // declaring two almost same constructors, but that condition in enable_if_t // is different, so that either one is chosen, thanks to SFINAE. template < typename U, std::enable_if_t::value && !internal::IsConvertibleFromOptional::value && std::is_convertible::value, bool> = false> Optional(const Optional& other) : internal::OptionalBase(other) {} template < typename U, std::enable_if_t::value && !internal::IsConvertibleFromOptional::value && !std::is_convertible::value, bool> = false> explicit Optional(const Optional& other) : internal::OptionalBase(other) {} // Converting move constructor. Similar to converting copy constructor, // declaring two (explicit and non-explicit) constructors. template < typename U, std::enable_if_t::value && !internal::IsConvertibleFromOptional::value && std::is_convertible::value, bool> = false> Optional(Optional&& other) : internal::OptionalBase(std::move(other)) {} template < typename U, std::enable_if_t::value && !internal::IsConvertibleFromOptional::value && !std::is_convertible::value, bool> = false> explicit Optional(Optional&& other) : internal::OptionalBase(std::move(other)) {} template constexpr explicit Optional(in_place_t, Args&&... args) : internal::OptionalBase(in_place, std::forward(args)...) {} template < class U, class... Args, class = std::enable_if_t&, Args...>::value>> constexpr explicit Optional(in_place_t, std::initializer_list il, Args&&... args) : internal::OptionalBase(in_place, il, std::forward(args)...) {} // Forward value constructor. Similar to converting constructors, // conditionally explicit. template < typename U = value_type, std::enable_if_t< std::is_constructible::value && !std::is_same, in_place_t>::value && !std::is_same, Optional>::value && std::is_convertible::value, bool> = false> constexpr Optional(U&& value) : internal::OptionalBase(in_place, std::forward(value)) {} template < typename U = value_type, std::enable_if_t< std::is_constructible::value && !std::is_same, in_place_t>::value && !std::is_same, Optional>::value && !std::is_convertible::value, bool> = false> constexpr explicit Optional(U&& value) : internal::OptionalBase(in_place, std::forward(value)) {} ~Optional() = default; // Defer copy-/move- assign operator implementation to OptionalBase. Optional& operator=(const Optional& other) = default; Optional& operator=(Optional&& other) noexcept( std::is_nothrow_move_assignable::value&& std::is_nothrow_move_constructible::value) = default; Optional& operator=(nullopt_t) { FreeIfNeeded(); return *this; } // Perfect-forwarded assignment. template std::enable_if_t< !std::is_same, Optional>::value && std::is_constructible::value && std::is_assignable::value && (!std::is_scalar::value || !std::is_same, T>::value), Optional&> operator=(U&& value) { InitOrAssign(std::forward(value)); return *this; } // Copy assign the state of other. template std::enable_if_t::value && std::is_constructible::value && std::is_assignable::value, Optional&> operator=(const Optional& other) { CopyAssign(other); return *this; } // Move assign the state of other. template std::enable_if_t::value && std::is_constructible::value && std::is_assignable::value, Optional&> operator=(Optional&& other) { MoveAssign(std::move(other)); return *this; } constexpr const T* operator->() const { CHECK(storage_.is_populated_); return std::addressof(storage_.value_); } constexpr T* operator->() { CHECK(storage_.is_populated_); return std::addressof(storage_.value_); } constexpr const T& operator*() const & { CHECK(storage_.is_populated_); return storage_.value_; } constexpr T& operator*() & { CHECK(storage_.is_populated_); return storage_.value_; } constexpr const T&& operator*() const && { CHECK(storage_.is_populated_); return std::move(storage_.value_); } constexpr T&& operator*() && { CHECK(storage_.is_populated_); return std::move(storage_.value_); } constexpr explicit operator bool() const { return storage_.is_populated_; } constexpr bool has_value() const { return storage_.is_populated_; } constexpr T& value() & { CHECK(storage_.is_populated_); return storage_.value_; } constexpr const T& value() const & { CHECK(storage_.is_populated_); return storage_.value_; } constexpr T&& value() && { CHECK(storage_.is_populated_); return std::move(storage_.value_); } constexpr const T&& value() const && { CHECK(storage_.is_populated_); return std::move(storage_.value_); } template constexpr T value_or(U&& default_value) const& { // TODO(mlamouri): add the following assert when possible: // static_assert(std::is_copy_constructible::value, // "T must be copy constructible"); static_assert(std::is_convertible::value, "U must be convertible to T"); return storage_.is_populated_ ? storage_.value_ : static_cast(std::forward(default_value)); } template constexpr T value_or(U&& default_value) && { // TODO(mlamouri): add the following assert when possible: // static_assert(std::is_move_constructible::value, // "T must be move constructible"); static_assert(std::is_convertible::value, "U must be convertible to T"); return storage_.is_populated_ ? std::move(storage_.value_) : static_cast(std::forward(default_value)); } void swap(Optional& other) { if (!storage_.is_populated_ && !other.storage_.is_populated_) return; if (storage_.is_populated_ != other.storage_.is_populated_) { if (storage_.is_populated_) { other.storage_.Init(std::move(storage_.value_)); FreeIfNeeded(); } else { storage_.Init(std::move(other.storage_.value_)); other.FreeIfNeeded(); } return; } DCHECK(storage_.is_populated_ && other.storage_.is_populated_); using std::swap; swap(**this, *other); } void reset() { FreeIfNeeded(); } template T& emplace(Args&&... args) { FreeIfNeeded(); storage_.Init(std::forward(args)...); return storage_.value_; } template std::enable_if_t< std::is_constructible&, Args&&...>::value, T&> emplace(std::initializer_list il, Args&&... args) { FreeIfNeeded(); storage_.Init(il, std::forward(args)...); return storage_.value_; } private: // Accessing template base class's protected member needs explicit // declaration to do so. using internal::OptionalBase::CopyAssign; using internal::OptionalBase::FreeIfNeeded; using internal::OptionalBase::InitOrAssign; using internal::OptionalBase::MoveAssign; using internal::OptionalBase::storage_; }; // Here after defines comparation operators. The definition follows // http://en.cppreference.com/w/cpp/utility/optional/operator_cmp // while bool() casting is replaced by has_value() to meet the chromium // style guide. template constexpr bool operator==(const Optional& lhs, const Optional& rhs) { if (lhs.has_value() != rhs.has_value()) return false; if (!lhs.has_value()) return true; return *lhs == *rhs; } template constexpr bool operator!=(const Optional& lhs, const Optional& rhs) { if (lhs.has_value() != rhs.has_value()) return true; if (!lhs.has_value()) return false; return *lhs != *rhs; } template constexpr bool operator<(const Optional& lhs, const Optional& rhs) { if (!rhs.has_value()) return false; if (!lhs.has_value()) return true; return *lhs < *rhs; } template constexpr bool operator<=(const Optional& lhs, const Optional& rhs) { if (!lhs.has_value()) return true; if (!rhs.has_value()) return false; return *lhs <= *rhs; } template constexpr bool operator>(const Optional& lhs, const Optional& rhs) { if (!lhs.has_value()) return false; if (!rhs.has_value()) return true; return *lhs > *rhs; } template constexpr bool operator>=(const Optional& lhs, const Optional& rhs) { if (!rhs.has_value()) return true; if (!lhs.has_value()) return false; return *lhs >= *rhs; } template constexpr bool operator==(const Optional& opt, nullopt_t) { return !opt; } template constexpr bool operator==(nullopt_t, const Optional& opt) { return !opt; } template constexpr bool operator!=(const Optional& opt, nullopt_t) { return opt.has_value(); } template constexpr bool operator!=(nullopt_t, const Optional& opt) { return opt.has_value(); } template constexpr bool operator<(const Optional& opt, nullopt_t) { return false; } template constexpr bool operator<(nullopt_t, const Optional& opt) { return opt.has_value(); } template constexpr bool operator<=(const Optional& opt, nullopt_t) { return !opt; } template constexpr bool operator<=(nullopt_t, const Optional& opt) { return true; } template constexpr bool operator>(const Optional& opt, nullopt_t) { return opt.has_value(); } template constexpr bool operator>(nullopt_t, const Optional& opt) { return false; } template constexpr bool operator>=(const Optional& opt, nullopt_t) { return true; } template constexpr bool operator>=(nullopt_t, const Optional& opt) { return !opt; } template constexpr bool operator==(const Optional& opt, const U& value) { return opt.has_value() ? *opt == value : false; } template constexpr bool operator==(const U& value, const Optional& opt) { return opt.has_value() ? value == *opt : false; } template constexpr bool operator!=(const Optional& opt, const U& value) { return opt.has_value() ? *opt != value : true; } template constexpr bool operator!=(const U& value, const Optional& opt) { return opt.has_value() ? value != *opt : true; } template constexpr bool operator<(const Optional& opt, const U& value) { return opt.has_value() ? *opt < value : true; } template constexpr bool operator<(const U& value, const Optional& opt) { return opt.has_value() ? value < *opt : false; } template constexpr bool operator<=(const Optional& opt, const U& value) { return opt.has_value() ? *opt <= value : true; } template constexpr bool operator<=(const U& value, const Optional& opt) { return opt.has_value() ? value <= *opt : false; } template constexpr bool operator>(const Optional& opt, const U& value) { return opt.has_value() ? *opt > value : false; } template constexpr bool operator>(const U& value, const Optional& opt) { return opt.has_value() ? value > *opt : true; } template constexpr bool operator>=(const Optional& opt, const U& value) { return opt.has_value() ? *opt >= value : false; } template constexpr bool operator>=(const U& value, const Optional& opt) { return opt.has_value() ? value >= *opt : true; } template constexpr Optional> make_optional(T&& value) { return Optional>(std::forward(value)); } template constexpr Optional make_optional(Args&&... args) { return Optional(in_place, std::forward(args)...); } template constexpr Optional make_optional(std::initializer_list il, Args&&... args) { return Optional(in_place, il, std::forward(args)...); } // Partial specialization for a function template is not allowed. Also, it is // not allowed to add overload function to std namespace, while it is allowed // to specialize the template in std. Thus, swap() (kind of) overloading is // defined in base namespace, instead. template std::enable_if_t::value && internal::IsSwappable::value> swap(Optional& lhs, Optional& rhs) { lhs.swap(rhs); } } // namespace base namespace std { template struct hash> { size_t operator()(const base::Optional& opt) const { return opt == base::nullopt ? 0 : std::hash()(*opt); } }; } // namespace std #endif // BASE_OPTIONAL_H_