123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- //
- // An iterative solver for solving the Schur complement/reduced camera
- // linear system that arise in SfM problems.
- #ifndef CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_
- #define CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_
- #include <memory>
- #include "ceres/internal/disable_warnings.h"
- #include "ceres/internal/eigen.h"
- #include "ceres/internal/export.h"
- #include "ceres/linear_operator.h"
- #include "ceres/linear_solver.h"
- #include "ceres/partitioned_matrix_view.h"
- #include "ceres/types.h"
- namespace ceres::internal {
- class BlockSparseMatrix;
- // This class implements various linear algebraic operations related
- // to the Schur complement without explicitly forming it.
- //
- //
- // Given a reactangular linear system Ax = b, where
- //
- // A = [E F]
- //
- // The normal equations are given by
- //
- // A'Ax = A'b
- //
- // |E'E E'F||y| = |E'b|
- // |F'E F'F||z| |F'b|
- //
- // and the Schur complement system is given by
- //
- // [F'F - F'E (E'E)^-1 E'F] z = F'b - F'E (E'E)^-1 E'b
- //
- // Now if we wish to solve Ax = b in the least squares sense, one way
- // is to form this Schur complement system and solve it using
- // Preconditioned Conjugate Gradients.
- //
- // The key operation in a conjugate gradient solver is the evaluation of the
- // matrix vector product with the Schur complement
- //
- // S = F'F - F'E (E'E)^-1 E'F
- //
- // It is straightforward to see that matrix vector products with S can
- // be evaluated without storing S in memory. Instead, given (E'E)^-1
- // (which for our purposes is an easily inverted block diagonal
- // matrix), it can be done in terms of matrix vector products with E,
- // F and (E'E)^-1. This class implements this functionality and other
- // auxiliary bits needed to implement a CG solver on the Schur
- // complement using the PartitionedMatrixView object.
- //
- // THREAD SAFETY: This class is not thread safe. In particular, the
- // RightMultiplyAndAccumulate (and the LeftMultiplyAndAccumulate) methods are
- // not thread safe as they depend on mutable arrays used for the temporaries
- // needed to compute the product y += Sx;
- class CERES_NO_EXPORT ImplicitSchurComplement final : public LinearOperator {
- public:
- // num_eliminate_blocks is the number of E blocks in the matrix
- // A.
- //
- // preconditioner indicates whether the inverse of the matrix F'F
- // should be computed or not as a preconditioner for the Schur
- // Complement.
- //
- // TODO(sameeragarwal): Get rid of the two bools below and replace
- // them with enums.
- explicit ImplicitSchurComplement(const LinearSolver::Options& options);
- // Initialize the Schur complement for a linear least squares
- // problem of the form
- //
- // |A | x = |b|
- // |diag(D)| |0|
- //
- // If D is null, then it is treated as a zero dimensional matrix. It
- // is important that the matrix A have a BlockStructure object
- // associated with it and has a block structure that is compatible
- // with the SchurComplement solver.
- void Init(const BlockSparseMatrix& A, const double* D, const double* b);
- // y += Sx, where S is the Schur complement.
- void RightMultiplyAndAccumulate(const double* x, double* y) const final;
- // The Schur complement is a symmetric positive definite matrix,
- // thus the left and right multiply operators are the same.
- void LeftMultiplyAndAccumulate(const double* x, double* y) const final {
- RightMultiplyAndAccumulate(x, y);
- }
- // Following is useful for approximation of S^-1 via power series expansion.
- // Z = (F'F)^-1 F'E (E'E)^-1 E'F
- // y += Zx
- void InversePowerSeriesOperatorRightMultiplyAccumulate(const double* x,
- double* y) const;
- // y = (E'E)^-1 (E'b - E'F x). Given an estimate of the solution to
- // the Schur complement system, this method computes the value of
- // the e_block variables that were eliminated to form the Schur
- // complement.
- void BackSubstitute(const double* x, double* y);
- int num_rows() const final { return A_->num_cols_f(); }
- int num_cols() const final { return A_->num_cols_f(); }
- const Vector& rhs() const { return rhs_; }
- const BlockSparseMatrix* block_diagonal_EtE_inverse() const {
- return block_diagonal_EtE_inverse_.get();
- }
- const BlockSparseMatrix* block_diagonal_FtF_inverse() const {
- CHECK(compute_ftf_inverse_);
- return block_diagonal_FtF_inverse_.get();
- }
- private:
- void AddDiagonalAndInvert(const double* D, BlockSparseMatrix* matrix);
- void UpdateRhs();
- const LinearSolver::Options& options_;
- bool compute_ftf_inverse_ = false;
- std::unique_ptr<PartitionedMatrixViewBase> A_;
- const double* D_ = nullptr;
- const double* b_ = nullptr;
- std::unique_ptr<BlockSparseMatrix> block_diagonal_EtE_inverse_;
- std::unique_ptr<BlockSparseMatrix> block_diagonal_FtF_inverse_;
- Vector rhs_;
- // Temporary storage vectors used to implement RightMultiplyAndAccumulate.
- mutable Vector tmp_rows_;
- mutable Vector tmp_e_cols_;
- mutable Vector tmp_e_cols_2_;
- mutable Vector tmp_f_cols_;
- };
- } // namespace ceres::internal
- #include "ceres/internal/reenable_warnings.h"
- #endif // CERES_INTERNAL_IMPLICIT_SCHUR_COMPLEMENT_H_
|