123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #ifndef CERES_INTERNAL_DOGLEG_STRATEGY_H_
- #define CERES_INTERNAL_DOGLEG_STRATEGY_H_
- #include "ceres/internal/disable_warnings.h"
- #include "ceres/internal/export.h"
- #include "ceres/linear_solver.h"
- #include "ceres/trust_region_strategy.h"
- namespace ceres::internal {
- // Dogleg step computation and trust region sizing strategy based on
- // on "Methods for Nonlinear Least Squares" by K. Madsen, H.B. Nielsen
- // and O. Tingleff. Available to download from
- //
- // http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
- //
- // One minor modification is that instead of computing the pure
- // Gauss-Newton step, we compute a regularized version of it. This is
- // because the Jacobian is often rank-deficient and in such cases
- // using a direct solver leads to numerical failure.
- //
- // If SUBSPACE is passed as the type argument to the constructor, the
- // DoglegStrategy follows the approach by Shultz, Schnabel, Byrd.
- // This finds the exact optimum over the two-dimensional subspace
- // spanned by the two Dogleg vectors.
- class CERES_NO_EXPORT DoglegStrategy final : public TrustRegionStrategy {
- public:
- explicit DoglegStrategy(const TrustRegionStrategy::Options& options);
- // TrustRegionStrategy interface
- Summary ComputeStep(const PerSolveOptions& per_solve_options,
- SparseMatrix* jacobian,
- const double* residuals,
- double* step) final;
- void StepAccepted(double step_quality) final;
- void StepRejected(double step_quality) final;
- void StepIsInvalid() override;
- double Radius() const final;
- // These functions are predominantly for testing.
- Vector gradient() const { return gradient_; }
- Vector gauss_newton_step() const { return gauss_newton_step_; }
- Matrix subspace_basis() const { return subspace_basis_; }
- Vector subspace_g() const { return subspace_g_; }
- Matrix subspace_B() const { return subspace_B_; }
- private:
- using Vector2d = Eigen::Matrix<double, 2, 1, Eigen::DontAlign>;
- using Matrix2d = Eigen::Matrix<double, 2, 2, Eigen::DontAlign>;
- LinearSolver::Summary ComputeGaussNewtonStep(
- const PerSolveOptions& per_solve_options,
- SparseMatrix* jacobian,
- const double* residuals);
- void ComputeCauchyPoint(SparseMatrix* jacobian);
- void ComputeGradient(SparseMatrix* jacobian, const double* residuals);
- void ComputeTraditionalDoglegStep(double* step);
- bool ComputeSubspaceModel(SparseMatrix* jacobian);
- void ComputeSubspaceDoglegStep(double* step);
- bool FindMinimumOnTrustRegionBoundary(Vector2d* minimum) const;
- Vector MakePolynomialForBoundaryConstrainedProblem() const;
- Vector2d ComputeSubspaceStepFromRoot(double lambda) const;
- double EvaluateSubspaceModel(const Vector2d& x) const;
- LinearSolver* linear_solver_;
- double radius_;
- const double max_radius_;
- const double min_diagonal_;
- const double max_diagonal_;
- // mu is used to scale the diagonal matrix used to make the
- // Gauss-Newton solve full rank. In each solve, the strategy starts
- // out with mu = min_mu, and tries values up to max_mu. If the user
- // reports an invalid step, the value of mu_ is increased so that
- // the next solve starts with a stronger regularization.
- //
- // If a successful step is reported, then the value of mu_ is
- // decreased with a lower bound of min_mu_.
- double mu_;
- const double min_mu_;
- const double max_mu_;
- const double mu_increase_factor_;
- const double increase_threshold_;
- const double decrease_threshold_;
- Vector diagonal_; // sqrt(diag(J^T J))
- Vector lm_diagonal_;
- Vector gradient_;
- Vector gauss_newton_step_;
- // cauchy_step = alpha * gradient
- double alpha_;
- double dogleg_step_norm_;
- // When, ComputeStep is called, reuse_ indicates whether the
- // Gauss-Newton and Cauchy steps from the last call to ComputeStep
- // can be reused or not.
- //
- // If the user called StepAccepted, then it is expected that the
- // user has recomputed the Jacobian matrix and new Gauss-Newton
- // solve is needed and reuse is set to false.
- //
- // If the user called StepRejected, then it is expected that the
- // user wants to solve the trust region problem with the same matrix
- // but a different trust region radius and the Gauss-Newton and
- // Cauchy steps can be reused to compute the Dogleg, thus reuse is
- // set to true.
- //
- // If the user called StepIsInvalid, then there was a numerical
- // problem with the step computed in the last call to ComputeStep,
- // and the regularization used to do the Gauss-Newton solve is
- // increased and a new solve should be done when ComputeStep is
- // called again, thus reuse is set to false.
- bool reuse_;
- // The dogleg type determines how the minimum of the local
- // quadratic model is found.
- DoglegType dogleg_type_;
- // If the type is SUBSPACE_DOGLEG, the two-dimensional
- // model 1/2 x^T B x + g^T x has to be computed and stored.
- bool subspace_is_one_dimensional_;
- Matrix subspace_basis_;
- Vector2d subspace_g_;
- Matrix2d subspace_B_;
- };
- } // namespace ceres::internal
- #include "ceres/internal/reenable_warnings.h"
- #endif // CERES_INTERNAL_DOGLEG_STRATEGY_H_
|