123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #include "ceres/dense_qr.h"
- #include <memory>
- #include <numeric>
- #include <string>
- #include <tuple>
- #include <vector>
- #include "Eigen/Dense"
- #include "ceres/internal/eigen.h"
- #include "ceres/linear_solver.h"
- #include "glog/logging.h"
- #include "gmock/gmock.h"
- #include "gtest/gtest.h"
- namespace ceres::internal {
- using Param = DenseLinearAlgebraLibraryType;
- namespace {
- std::string ParamInfoToString(testing::TestParamInfo<Param> info) {
- return DenseLinearAlgebraLibraryTypeToString(info.param);
- }
- } // namespace
- class DenseQRTest : public ::testing::TestWithParam<Param> {};
- TEST_P(DenseQRTest, FactorAndSolve) {
- // TODO(sameeragarwal): Convert these tests into type parameterized tests so
- // that we can test the single and double precision solvers.
- using Scalar = double;
- using MatrixType = Eigen::Matrix<Scalar, Eigen::Dynamic, Eigen::Dynamic>;
- using VectorType = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;
- LinearSolver::Options options;
- ContextImpl context;
- #ifndef CERES_NO_CUDA
- options.context = &context;
- std::string error;
- CHECK(context.InitCuda(&error)) << error;
- #endif // CERES_NO_CUDA
- options.dense_linear_algebra_library_type = GetParam();
- const double kEpsilon = std::numeric_limits<double>::epsilon() * 1.5e4;
- std::unique_ptr<DenseQR> dense_qr = DenseQR::Create(options);
- const int kNumTrials = 10;
- const int kMinNumCols = 1;
- const int kMaxNumCols = 10;
- const int kMinRowsFactor = 1;
- const int kMaxRowsFactor = 3;
- for (int num_cols = kMinNumCols; num_cols < kMaxNumCols; ++num_cols) {
- for (int num_rows = kMinRowsFactor * num_cols;
- num_rows < kMaxRowsFactor * num_cols;
- ++num_rows) {
- for (int trial = 0; trial < kNumTrials; ++trial) {
- MatrixType lhs = MatrixType::Random(num_rows, num_cols);
- Vector x = VectorType::Random(num_cols);
- Vector rhs = lhs * x;
- Vector actual = Vector::Random(num_cols);
- LinearSolver::Summary summary;
- summary.termination_type = dense_qr->FactorAndSolve(num_rows,
- num_cols,
- lhs.data(),
- rhs.data(),
- actual.data(),
- &summary.message);
- ASSERT_EQ(summary.termination_type,
- LinearSolverTerminationType::SUCCESS);
- ASSERT_NEAR((x - actual).norm() / x.norm(), 0.0, kEpsilon)
- << "\nexpected: " << x.transpose()
- << "\nactual : " << actual.transpose();
- }
- }
- }
- }
- namespace {
- // NOTE: preprocessor directives in a macro are not standard conforming
- decltype(auto) MakeValues() {
- return ::testing::Values(EIGEN
- #ifndef CERES_NO_LAPACK
- ,
- LAPACK
- #endif
- #ifndef CERES_NO_CUDA
- ,
- CUDA
- #endif
- );
- }
- } // namespace
- INSTANTIATE_TEST_SUITE_P(_, DenseQRTest, MakeValues(), ParamInfoToString);
- } // namespace ceres::internal
|