123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin)
- #include "ceres/cuda_kernels_bsm_to_crs.h"
- #include <cuda_runtime.h>
- #include <thrust/execution_policy.h>
- #include <thrust/scan.h>
- #include "ceres/block_structure.h"
- #include "ceres/cuda_kernels_utils.h"
- namespace ceres {
- namespace internal {
- namespace {
- inline auto ThrustCudaStreamExecutionPolicy(cudaStream_t stream) {
- // par_nosync execution policy was added in Thrust 1.16
- // https://github.com/NVIDIA/thrust/blob/main/CHANGELOG.md#thrust-1160
- #if THRUST_VERSION < 101700
- return thrust::cuda::par.on(stream);
- #else
- return thrust::cuda::par_nosync.on(stream);
- #endif
- }
- void* CudaMalloc(size_t size,
- cudaStream_t stream,
- bool memory_pools_supported) {
- void* data = nullptr;
- // Stream-ordered alloaction API is available since CUDA 11.2, but might be
- // not implemented by particular device
- #if CUDART_VERSION < 11020
- #warning \
- "Stream-ordered allocations are unavailable, consider updating CUDA toolkit to version 11.2+"
- cudaMalloc(&data, size);
- #else
- if (memory_pools_supported) {
- cudaMallocAsync(&data, size, stream);
- } else {
- cudaMalloc(&data, size);
- }
- #endif
- return data;
- }
- void CudaFree(void* data, cudaStream_t stream, bool memory_pools_supported) {
- // Stream-ordered alloaction API is available since CUDA 11.2, but might be
- // not implemented by particular device
- #if CUDART_VERSION < 11020
- #warning \
- "Stream-ordered allocations are unavailable, consider updating CUDA toolkit to version 11.2+"
- cudaSuccess, cudaFree(data);
- #else
- if (memory_pools_supported) {
- cudaFreeAsync(data, stream);
- } else {
- cudaFree(data);
- }
- #endif
- }
- template <typename T>
- T* CudaAllocate(size_t num_elements,
- cudaStream_t stream,
- bool memory_pools_supported) {
- T* data = static_cast<T*>(
- CudaMalloc(num_elements * sizeof(T), stream, memory_pools_supported));
- return data;
- }
- } // namespace
- // Fill row block id and nnz for each row using block-sparse structure
- // represented by a set of flat arrays.
- // Inputs:
- // - num_row_blocks: number of row-blocks in block-sparse structure
- // - first_cell_in_row_block: index of the first cell of the row-block; size:
- // num_row_blocks + 1
- // - cells: cells of block-sparse structure as a continuous array
- // - row_blocks: row blocks of block-sparse structure stored sequentially
- // - col_blocks: column blocks of block-sparse structure stored sequentially
- // Outputs:
- // - rows: rows[i + 1] will contain number of non-zeros in i-th row, rows[0]
- // will be set to 0; rows are filled with a shift by one element in order
- // to obtain row-index array of CRS matrix with a inclusive scan afterwards
- // - row_block_ids: row_block_ids[i] will be set to index of row-block that
- // contains i-th row.
- // Computation is perform row-block-wise
- template <bool partitioned = false>
- __global__ void RowBlockIdAndNNZ(
- const int num_row_blocks,
- const int num_col_blocks_e,
- const int num_row_blocks_e,
- const int* __restrict__ first_cell_in_row_block,
- const Cell* __restrict__ cells,
- const Block* __restrict__ row_blocks,
- const Block* __restrict__ col_blocks,
- int* __restrict__ rows_e,
- int* __restrict__ rows_f,
- int* __restrict__ row_block_ids) {
- const int row_block_id = blockIdx.x * blockDim.x + threadIdx.x;
- if (row_block_id > num_row_blocks) {
- // No synchronization is performed in this kernel, thus it is safe to return
- return;
- }
- if (row_block_id == num_row_blocks) {
- // one extra thread sets the first element
- rows_f[0] = 0;
- if constexpr (partitioned) {
- rows_e[0] = 0;
- }
- return;
- }
- const auto& row_block = row_blocks[row_block_id];
- auto first_cell = cells + first_cell_in_row_block[row_block_id];
- const auto last_cell = cells + first_cell_in_row_block[row_block_id + 1];
- int row_nnz_e = 0;
- if (partitioned && row_block_id < num_row_blocks_e) {
- // First cell is a cell from E
- row_nnz_e = col_blocks[first_cell->block_id].size;
- ++first_cell;
- }
- int row_nnz_f = 0;
- for (auto cell = first_cell; cell < last_cell; ++cell) {
- row_nnz_f += col_blocks[cell->block_id].size;
- }
- const int first_row = row_block.position;
- const int last_row = first_row + row_block.size;
- for (int i = first_row; i < last_row; ++i) {
- if constexpr (partitioned) {
- rows_e[i + 1] = row_nnz_e;
- }
- rows_f[i + 1] = row_nnz_f;
- row_block_ids[i] = row_block_id;
- }
- }
- // Row-wise creation of CRS structure
- // Inputs:
- // - num_rows: number of rows in matrix
- // - first_cell_in_row_block: index of the first cell of the row-block; size:
- // num_row_blocks + 1
- // - cells: cells of block-sparse structure as a continuous array
- // - row_blocks: row blocks of block-sparse structure stored sequentially
- // - col_blocks: column blocks of block-sparse structure stored sequentially
- // - row_block_ids: index of row-block that corresponds to row
- // - rows: row-index array of CRS structure
- // Outputs:
- // - cols: column-index array of CRS structure
- // Computaion is perform row-wise
- template <bool partitioned>
- __global__ void ComputeColumns(const int num_rows,
- const int num_row_blocks_e,
- const int num_col_blocks_e,
- const int* __restrict__ first_cell_in_row_block,
- const Cell* __restrict__ cells,
- const Block* __restrict__ row_blocks,
- const Block* __restrict__ col_blocks,
- const int* __restrict__ row_block_ids,
- const int* __restrict__ rows_e,
- int* __restrict__ cols_e,
- const int* __restrict__ rows_f,
- int* __restrict__ cols_f) {
- const int row = blockIdx.x * blockDim.x + threadIdx.x;
- if (row >= num_rows) {
- // No synchronization is performed in this kernel, thus it is safe to return
- return;
- }
- const int row_block_id = row_block_ids[row];
- // position in crs matrix
- auto first_cell = cells + first_cell_in_row_block[row_block_id];
- const auto last_cell = cells + first_cell_in_row_block[row_block_id + 1];
- const int num_cols_e = col_blocks[num_col_blocks_e].position;
- // For reach cell of row-block only current row is being filled
- if (partitioned && row_block_id < num_row_blocks_e) {
- // The first cell is cell from E
- const auto& col_block = col_blocks[first_cell->block_id];
- const int col_block_size = col_block.size;
- int column_idx = col_block.position;
- int crs_position_e = rows_e[row];
- // Column indices for each element of row_in_block row of current cell
- for (int i = 0; i < col_block_size; ++i, ++crs_position_e) {
- cols_e[crs_position_e] = column_idx++;
- }
- ++first_cell;
- }
- int crs_position_f = rows_f[row];
- for (auto cell = first_cell; cell < last_cell; ++cell) {
- const auto& col_block = col_blocks[cell->block_id];
- const int col_block_size = col_block.size;
- int column_idx = col_block.position - num_cols_e;
- // Column indices for each element of row_in_block row of current cell
- for (int i = 0; i < col_block_size; ++i, ++crs_position_f) {
- cols_f[crs_position_f] = column_idx++;
- }
- }
- }
- void FillCRSStructure(const int num_row_blocks,
- const int num_rows,
- const int* first_cell_in_row_block,
- const Cell* cells,
- const Block* row_blocks,
- const Block* col_blocks,
- int* rows,
- int* cols,
- cudaStream_t stream,
- bool memory_pools_supported) {
- // Set number of non-zeros per row in rows array and row to row-block map in
- // row_block_ids array
- int* row_block_ids =
- CudaAllocate<int>(num_rows, stream, memory_pools_supported);
- const int num_blocks_blockwise = NumBlocksInGrid(num_row_blocks + 1);
- RowBlockIdAndNNZ<false><<<num_blocks_blockwise, kCudaBlockSize, 0, stream>>>(
- num_row_blocks,
- 0,
- 0,
- first_cell_in_row_block,
- cells,
- row_blocks,
- col_blocks,
- nullptr,
- rows,
- row_block_ids);
- // Finalize row-index array of CRS strucure by computing prefix sum
- thrust::inclusive_scan(
- ThrustCudaStreamExecutionPolicy(stream), rows, rows + num_rows + 1, rows);
- // Fill cols array of CRS structure
- const int num_blocks_rowwise = NumBlocksInGrid(num_rows);
- ComputeColumns<false><<<num_blocks_rowwise, kCudaBlockSize, 0, stream>>>(
- num_rows,
- 0,
- 0,
- first_cell_in_row_block,
- cells,
- row_blocks,
- col_blocks,
- row_block_ids,
- nullptr,
- nullptr,
- rows,
- cols);
- CudaFree(row_block_ids, stream, memory_pools_supported);
- }
- void FillCRSStructurePartitioned(const int num_row_blocks,
- const int num_rows,
- const int num_row_blocks_e,
- const int num_col_blocks_e,
- const int num_nonzeros_e,
- const int* first_cell_in_row_block,
- const Cell* cells,
- const Block* row_blocks,
- const Block* col_blocks,
- int* rows_e,
- int* cols_e,
- int* rows_f,
- int* cols_f,
- cudaStream_t stream,
- bool memory_pools_supported) {
- // Set number of non-zeros per row in rows array and row to row-block map in
- // row_block_ids array
- int* row_block_ids =
- CudaAllocate<int>(num_rows, stream, memory_pools_supported);
- const int num_blocks_blockwise = NumBlocksInGrid(num_row_blocks + 1);
- RowBlockIdAndNNZ<true><<<num_blocks_blockwise, kCudaBlockSize, 0, stream>>>(
- num_row_blocks,
- num_col_blocks_e,
- num_row_blocks_e,
- first_cell_in_row_block,
- cells,
- row_blocks,
- col_blocks,
- rows_e,
- rows_f,
- row_block_ids);
- // Finalize row-index array of CRS strucure by computing prefix sum
- thrust::inclusive_scan(ThrustCudaStreamExecutionPolicy(stream),
- rows_e,
- rows_e + num_rows + 1,
- rows_e);
- thrust::inclusive_scan(ThrustCudaStreamExecutionPolicy(stream),
- rows_f,
- rows_f + num_rows + 1,
- rows_f);
- // Fill cols array of CRS structure
- const int num_blocks_rowwise = NumBlocksInGrid(num_rows);
- ComputeColumns<true><<<num_blocks_rowwise, kCudaBlockSize, 0, stream>>>(
- num_rows,
- num_row_blocks_e,
- num_col_blocks_e,
- first_cell_in_row_block,
- cells,
- row_blocks,
- col_blocks,
- row_block_ids,
- rows_e,
- cols_e,
- rows_f,
- cols_f);
- CudaFree(row_block_ids, stream, memory_pools_supported);
- }
- template <typename T, typename Predicate>
- __device__ int PartitionPoint(const T* data,
- int first,
- int last,
- Predicate&& predicate) {
- if (!predicate(data[first])) {
- return first;
- }
- while (last - first > 1) {
- const auto midpoint = first + (last - first) / 2;
- if (predicate(data[midpoint])) {
- first = midpoint;
- } else {
- last = midpoint;
- }
- }
- return last;
- }
- // Element-wise reordering of block-sparse values
- // - first_cell_in_row_block - position of the first cell of row-block
- // - block_sparse_values - segment of block-sparse values starting from
- // block_sparse_offset, containing num_values
- template <bool partitioned>
- __global__ void PermuteToCrsKernel(
- const int block_sparse_offset,
- const int num_values,
- const int num_row_blocks,
- const int num_row_blocks_e,
- const int* __restrict__ first_cell_in_row_block,
- const int* __restrict__ value_offset_row_block_f,
- const Cell* __restrict__ cells,
- const Block* __restrict__ row_blocks,
- const Block* __restrict__ col_blocks,
- const int* __restrict__ crs_rows,
- const double* __restrict__ block_sparse_values,
- double* __restrict__ crs_values) {
- const int value_id = blockIdx.x * blockDim.x + threadIdx.x;
- if (value_id >= num_values) {
- return;
- }
- const int block_sparse_value_id = value_id + block_sparse_offset;
- // Find the corresponding row-block with a binary search
- const int row_block_id =
- (partitioned
- ? PartitionPoint(value_offset_row_block_f,
- 0,
- num_row_blocks,
- [block_sparse_value_id] __device__(
- const int row_block_offset) {
- return row_block_offset <= block_sparse_value_id;
- })
- : PartitionPoint(first_cell_in_row_block,
- 0,
- num_row_blocks,
- [cells, block_sparse_value_id] __device__(
- const int row_block_offset) {
- return cells[row_block_offset].position <=
- block_sparse_value_id;
- })) -
- 1;
- // Find cell and calculate offset within the row with a linear scan
- const auto& row_block = row_blocks[row_block_id];
- auto first_cell = cells + first_cell_in_row_block[row_block_id];
- const auto last_cell = cells + first_cell_in_row_block[row_block_id + 1];
- const int row_block_size = row_block.size;
- int num_cols_before = 0;
- if (partitioned && row_block_id < num_row_blocks_e) {
- ++first_cell;
- }
- for (const Cell* cell = first_cell; cell < last_cell; ++cell) {
- const auto& col_block = col_blocks[cell->block_id];
- const int col_block_size = col_block.size;
- const int cell_size = row_block_size * col_block_size;
- if (cell->position + cell_size > block_sparse_value_id) {
- const int pos_in_cell = block_sparse_value_id - cell->position;
- const int row_in_cell = pos_in_cell / col_block_size;
- const int col_in_cell = pos_in_cell % col_block_size;
- const int row = row_in_cell + row_block.position;
- crs_values[crs_rows[row] + num_cols_before + col_in_cell] =
- block_sparse_values[value_id];
- break;
- }
- num_cols_before += col_block_size;
- }
- }
- void PermuteToCRS(const int block_sparse_offset,
- const int num_values,
- const int num_row_blocks,
- const int* first_cell_in_row_block,
- const Cell* cells,
- const Block* row_blocks,
- const Block* col_blocks,
- const int* crs_rows,
- const double* block_sparse_values,
- double* crs_values,
- cudaStream_t stream) {
- const int num_blocks_valuewise = NumBlocksInGrid(num_values);
- PermuteToCrsKernel<false>
- <<<num_blocks_valuewise, kCudaBlockSize, 0, stream>>>(
- block_sparse_offset,
- num_values,
- num_row_blocks,
- 0,
- first_cell_in_row_block,
- nullptr,
- cells,
- row_blocks,
- col_blocks,
- crs_rows,
- block_sparse_values,
- crs_values);
- }
- void PermuteToCRSPartitionedF(const int block_sparse_offset,
- const int num_values,
- const int num_row_blocks,
- const int num_row_blocks_e,
- const int* first_cell_in_row_block,
- const int* value_offset_row_block_f,
- const Cell* cells,
- const Block* row_blocks,
- const Block* col_blocks,
- const int* crs_rows,
- const double* block_sparse_values,
- double* crs_values,
- cudaStream_t stream) {
- const int num_blocks_valuewise = NumBlocksInGrid(num_values);
- PermuteToCrsKernel<true><<<num_blocks_valuewise, kCudaBlockSize, 0, stream>>>(
- block_sparse_offset,
- num_values,
- num_row_blocks,
- num_row_blocks_e,
- first_cell_in_row_block,
- value_offset_row_block_f,
- cells,
- row_blocks,
- col_blocks,
- crs_rows,
- block_sparse_values,
- crs_values);
- }
- } // namespace internal
- } // namespace ceres
|