123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Authors: dmitriy.korchemkin@gmail.com (Dmitriy Korchemkin)
- //
- #ifndef CERES_INTERNAL_CUDA_BLOCK_SPARSE_CRS_VIEW_H_
- #define CERES_INTERNAL_CUDA_BLOCK_SPARSE_CRS_VIEW_H_
- #include "ceres/internal/config.h"
- #ifndef CERES_NO_CUDA
- #include <memory>
- #include "ceres/block_sparse_matrix.h"
- #include "ceres/cuda_block_structure.h"
- #include "ceres/cuda_buffer.h"
- #include "ceres/cuda_sparse_matrix.h"
- #include "ceres/cuda_streamed_buffer.h"
- namespace ceres::internal {
- // We use cuSPARSE library for SpMV operations. However, it does not support
- // block-sparse format with varying size of the blocks. Thus, we perform the
- // following operations in order to compute products of block-sparse matrices
- // and dense vectors on gpu:
- // - Once per block-sparse structure update:
- // - Compute CRS structure from block-sparse structure and check if values of
- // block-sparse matrix would have the same order as values of CRS matrix
- // - Once per block-sparse values update:
- // - Update values in CRS matrix with values of block-sparse matrix
- //
- // Only block-sparse matrices with sequential order of cells are supported.
- //
- // UpdateValues method updates values:
- // - In a single host-to-device copy for matrices with CRS-compatible value
- // layout
- // - Simultaneously transferring and permuting values using CudaStreamedBuffer
- // otherwise
- class CERES_NO_EXPORT CudaBlockSparseCRSView {
- public:
- // Initializes internal CRS matrix using structure and values of block-sparse
- // matrix For block-sparse matrices that have value layout different from CRS
- // block-sparse structure will be stored/
- CudaBlockSparseCRSView(const BlockSparseMatrix& bsm, ContextImpl* context);
- const CudaSparseMatrix* crs_matrix() const { return crs_matrix_.get(); }
- CudaSparseMatrix* mutable_crs_matrix() { return crs_matrix_.get(); }
- // Update values of crs_matrix_ using values of block-sparse matrix.
- // Assumes that bsm has the same block-sparse structure as matrix that was
- // used for construction.
- void UpdateValues(const BlockSparseMatrix& bsm);
- // Returns true if block-sparse matrix had CRS-compatible value layout
- bool IsCrsCompatible() const { return is_crs_compatible_; }
- void LeftMultiplyAndAccumulate(const CudaVector& x, CudaVector* y) const {
- crs_matrix()->LeftMultiplyAndAccumulate(x, y);
- }
- void RightMultiplyAndAccumulate(const CudaVector& x, CudaVector* y) const {
- crs_matrix()->RightMultiplyAndAccumulate(x, y);
- }
- private:
- // Value permutation kernel performs a single element-wise operation per
- // thread, thus performing permutation in blocks of 8 megabytes of
- // block-sparse values seems reasonable
- static constexpr int kMaxTemporaryArraySize = 1 * 1024 * 1024;
- std::unique_ptr<CudaSparseMatrix> crs_matrix_;
- // Only created if block-sparse matrix has non-CRS value layout
- std::unique_ptr<CudaStreamedBuffer<double>> streamed_buffer_;
- // Only stored if block-sparse matrix has non-CRS value layout
- std::unique_ptr<CudaBlockSparseStructure> block_structure_;
- bool is_crs_compatible_;
- ContextImpl* context_;
- };
- } // namespace ceres::internal
- #endif // CERES_NO_CUDA
- #endif // CERES_INTERNAL_CUDA_BLOCK_SPARSE_CRS_VIEW_H_
|