| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187 | 
							- // Ceres Solver - A fast non-linear least squares minimizer
 
- // Copyright 2023 Google Inc. All rights reserved.
 
- // http://ceres-solver.org/
 
- //
 
- // Redistribution and use in source and binary forms, with or without
 
- // modification, are permitted provided that the following conditions are met:
 
- //
 
- // * Redistributions of source code must retain the above copyright notice,
 
- //   this list of conditions and the following disclaimer.
 
- // * Redistributions in binary form must reproduce the above copyright notice,
 
- //   this list of conditions and the following disclaimer in the documentation
 
- //   and/or other materials provided with the distribution.
 
- // * Neither the name of Google Inc. nor the names of its contributors may be
 
- //   used to endorse or promote products derived from this software without
 
- //   specific prior written permission.
 
- //
 
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 
- // POSSIBILITY OF SUCH DAMAGE.
 
- //
 
- // Author: sameeragarwal@google.com (Sameer Agarwal)
 
- #include "ceres/compressed_col_sparse_matrix_utils.h"
 
- #include <algorithm>
 
- #include <numeric>
 
- #include <vector>
 
- #include "Eigen/SparseCore"
 
- #include "ceres/internal/export.h"
 
- #include "ceres/triplet_sparse_matrix.h"
 
- #include "glog/logging.h"
 
- #include "gtest/gtest.h"
 
- namespace ceres::internal {
 
- TEST(_, BlockPermutationToScalarPermutation) {
 
-   //  Block structure
 
-   //  0  --1-  ---2---  ---3---  4
 
-   // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 
-   std::vector<Block> blocks{{1, 0}, {2, 1}, {3, 3}, {3, 6}, {1, 9}};
 
-   // Block ordering
 
-   // [1, 0, 2, 4, 5]
 
-   std::vector<int> block_ordering{{1, 0, 2, 4, 3}};
 
-   // Expected ordering
 
-   // [1, 2, 0, 3, 4, 5, 9, 6, 7, 8]
 
-   std::vector<int> expected_scalar_ordering{{1, 2, 0, 3, 4, 5, 9, 6, 7, 8}};
 
-   std::vector<int> scalar_ordering;
 
-   BlockOrderingToScalarOrdering(blocks, block_ordering, &scalar_ordering);
 
-   EXPECT_EQ(scalar_ordering.size(), expected_scalar_ordering.size());
 
-   for (int i = 0; i < expected_scalar_ordering.size(); ++i) {
 
-     EXPECT_EQ(scalar_ordering[i], expected_scalar_ordering[i]);
 
-   }
 
- }
 
- static void FillBlock(const std::vector<Block>& row_blocks,
 
-                       const std::vector<Block>& col_blocks,
 
-                       const int row_block_id,
 
-                       const int col_block_id,
 
-                       std::vector<Eigen::Triplet<double>>* triplets) {
 
-   for (int r = 0; r < row_blocks[row_block_id].size; ++r) {
 
-     for (int c = 0; c < col_blocks[col_block_id].size; ++c) {
 
-       triplets->push_back(
 
-           Eigen::Triplet<double>(row_blocks[row_block_id].position + r,
 
-                                  col_blocks[col_block_id].position + c,
 
-                                  1.0));
 
-     }
 
-   }
 
- }
 
- TEST(_, ScalarMatrixToBlockMatrix) {
 
-   // Block sparsity.
 
-   //
 
-   //     [1 2 3 2]
 
-   // [1]  x   x
 
-   // [2]    x   x
 
-   // [2]  x x
 
-   // num_nonzeros = 1 + 3 + 4 + 4 + 1 + 2 = 15
 
-   std::vector<Block> col_blocks{{1, 0}, {2, 1}, {3, 3}, {2, 5}};
 
-   const int num_cols = NumScalarEntries(col_blocks);
 
-   std::vector<Block> row_blocks{{1, 0}, {2, 1}, {2, 3}};
 
-   const int num_rows = NumScalarEntries(row_blocks);
 
-   std::vector<Eigen::Triplet<double>> triplets;
 
-   FillBlock(row_blocks, col_blocks, 0, 0, &triplets);
 
-   FillBlock(row_blocks, col_blocks, 2, 0, &triplets);
 
-   FillBlock(row_blocks, col_blocks, 1, 1, &triplets);
 
-   FillBlock(row_blocks, col_blocks, 2, 1, &triplets);
 
-   FillBlock(row_blocks, col_blocks, 0, 2, &triplets);
 
-   FillBlock(row_blocks, col_blocks, 1, 3, &triplets);
 
-   Eigen::SparseMatrix<double> sparse_matrix(num_rows, num_cols);
 
-   sparse_matrix.setFromTriplets(triplets.begin(), triplets.end());
 
-   const std::vector<int> expected_compressed_block_rows{{0, 2, 1, 2, 0, 1}};
 
-   const std::vector<int> expected_compressed_block_cols{{0, 2, 4, 5, 6}};
 
-   std::vector<int> compressed_block_rows;
 
-   std::vector<int> compressed_block_cols;
 
-   CompressedColumnScalarMatrixToBlockMatrix(sparse_matrix.innerIndexPtr(),
 
-                                             sparse_matrix.outerIndexPtr(),
 
-                                             row_blocks,
 
-                                             col_blocks,
 
-                                             &compressed_block_rows,
 
-                                             &compressed_block_cols);
 
-   EXPECT_EQ(compressed_block_rows, expected_compressed_block_rows);
 
-   EXPECT_EQ(compressed_block_cols, expected_compressed_block_cols);
 
- }
 
- class SolveUpperTriangularTest : public ::testing::Test {
 
-  protected:
 
-   const std::vector<int>& cols() const { return cols_; }
 
-   const std::vector<int>& rows() const { return rows_; }
 
-   const std::vector<double>& values() const { return values_; }
 
-  private:
 
-   const std::vector<int> cols_ = {0, 1, 2, 4, 7};
 
-   const std::vector<int> rows_ = {0, 1, 1, 2, 0, 1, 3};
 
-   const std::vector<double> values_ = {
 
-       0.50754, 0.80483, 0.14120, 0.3, 0.77696, 0.41860, 0.88979};
 
- };
 
- TEST_F(SolveUpperTriangularTest, SolveInPlace) {
 
-   double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0};
 
-   const double expected[] = {-1.4706, -1.0962, 6.6667, 2.2477};
 
-   SolveUpperTriangularInPlace<int>(cols().size() - 1,
 
-                                    rows().data(),
 
-                                    cols().data(),
 
-                                    values().data(),
 
-                                    rhs_and_solution);
 
-   for (int i = 0; i < 4; ++i) {
 
-     EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i;
 
-   }
 
- }
 
- TEST_F(SolveUpperTriangularTest, TransposeSolveInPlace) {
 
-   double rhs_and_solution[] = {1.0, 1.0, 2.0, 2.0};
 
-   double expected[] = {1.970288, 1.242498, 6.081864, -0.057255};
 
-   SolveUpperTriangularTransposeInPlace<int>(cols().size() - 1,
 
-                                             rows().data(),
 
-                                             cols().data(),
 
-                                             values().data(),
 
-                                             rhs_and_solution);
 
-   for (int i = 0; i < 4; ++i) {
 
-     EXPECT_NEAR(rhs_and_solution[i], expected[i], 1e-4) << i;
 
-   }
 
- }
 
- TEST_F(SolveUpperTriangularTest, RTRSolveWithSparseRHS) {
 
-   double solution[4];
 
-   // clang-format off
 
-   double expected[] = { 6.8420e+00,   1.0057e+00,  -1.4907e-16,  -1.9335e+00,
 
-                         1.0057e+00,   2.2275e+00,  -1.9493e+00,  -6.5693e-01,
 
-                         -1.4907e-16,  -1.9493e+00,   1.1111e+01,   9.7381e-17,
 
-                         -1.9335e+00,  -6.5693e-01,   9.7381e-17,   1.2631e+00 };
 
-   // clang-format on
 
-   for (int i = 0; i < 4; ++i) {
 
-     SolveRTRWithSparseRHS<int>(cols().size() - 1,
 
-                                rows().data(),
 
-                                cols().data(),
 
-                                values().data(),
 
-                                i,
 
-                                solution);
 
-     for (int j = 0; j < 4; ++j) {
 
-       EXPECT_NEAR(solution[j], expected[4 * i + j], 1e-3) << i;
 
-     }
 
-   }
 
- }
 
- }  // namespace ceres::internal
 
 
  |