123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: keir@google.com (Keir Mierle)
- // sameeragarwal@google.com (Sameer Agarwal)
- //
- // Templated functions for manipulating rotations. The templated
- // functions are useful when implementing functors for automatic
- // differentiation.
- //
- // In the following, the Quaternions are laid out as 4-vectors, thus:
- //
- // q[0] scalar part.
- // q[1] coefficient of i.
- // q[2] coefficient of j.
- // q[3] coefficient of k.
- //
- // where: i*i = j*j = k*k = -1 and i*j = k, j*k = i, k*i = j.
- #ifndef CERES_PUBLIC_ROTATION_H_
- #define CERES_PUBLIC_ROTATION_H_
- #include <algorithm>
- #include <cmath>
- #include "ceres/constants.h"
- #include "ceres/internal/euler_angles.h"
- #include "glog/logging.h"
- namespace ceres {
- // Trivial wrapper to index linear arrays as matrices, given a fixed
- // column and row stride. When an array "T* array" is wrapped by a
- //
- // (const) MatrixAdapter<T, row_stride, col_stride> M"
- //
- // the expression M(i, j) is equivalent to
- //
- // array[i * row_stride + j * col_stride]
- //
- // Conversion functions to and from rotation matrices accept
- // MatrixAdapters to permit using row-major and column-major layouts,
- // and rotation matrices embedded in larger matrices (such as a 3x4
- // projection matrix).
- template <typename T, int row_stride, int col_stride>
- struct MatrixAdapter;
- // Convenience functions to create a MatrixAdapter that treats the
- // array pointed to by "pointer" as a 3x3 (contiguous) column-major or
- // row-major matrix.
- template <typename T>
- MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer);
- template <typename T>
- MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer);
- // Convert a value in combined axis-angle representation to a quaternion.
- // The value angle_axis is a triple whose norm is an angle in radians,
- // and whose direction is aligned with the axis of rotation,
- // and quaternion is a 4-tuple that will contain the resulting quaternion.
- // The implementation may be used with auto-differentiation up to the first
- // derivative, higher derivatives may have unexpected results near the origin.
- template <typename T>
- void AngleAxisToQuaternion(const T* angle_axis, T* quaternion);
- // Convert a quaternion to the equivalent combined axis-angle representation.
- // The value quaternion must be a unit quaternion - it is not normalized first,
- // and angle_axis will be filled with a value whose norm is the angle of
- // rotation in radians, and whose direction is the axis of rotation.
- // The implementation may be used with auto-differentiation up to the first
- // derivative, higher derivatives may have unexpected results near the origin.
- template <typename T>
- void QuaternionToAngleAxis(const T* quaternion, T* angle_axis);
- // Conversions between 3x3 rotation matrix (in column major order) and
- // quaternion rotation representations. Templated for use with
- // autodifferentiation.
- template <typename T>
- void RotationMatrixToQuaternion(const T* R, T* quaternion);
- template <typename T, int row_stride, int col_stride>
- void RotationMatrixToQuaternion(
- const MatrixAdapter<const T, row_stride, col_stride>& R, T* quaternion);
- // Conversions between 3x3 rotation matrix (in column major order) and
- // axis-angle rotation representations. Templated for use with
- // autodifferentiation.
- template <typename T>
- void RotationMatrixToAngleAxis(const T* R, T* angle_axis);
- template <typename T, int row_stride, int col_stride>
- void RotationMatrixToAngleAxis(
- const MatrixAdapter<const T, row_stride, col_stride>& R, T* angle_axis);
- template <typename T>
- void AngleAxisToRotationMatrix(const T* angle_axis, T* R);
- template <typename T, int row_stride, int col_stride>
- void AngleAxisToRotationMatrix(
- const T* angle_axis, const MatrixAdapter<T, row_stride, col_stride>& R);
- // Conversions between 3x3 rotation matrix (in row major order) and
- // Euler angle (in degrees) rotation representations.
- //
- // The {pitch,roll,yaw} Euler angles are rotations around the {x,y,z}
- // axes, respectively. They are applied in that same order, so the
- // total rotation R is Rz * Ry * Rx.
- template <typename T>
- void EulerAnglesToRotationMatrix(const T* euler, int row_stride, T* R);
- template <typename T, int row_stride, int col_stride>
- void EulerAnglesToRotationMatrix(
- const T* euler, const MatrixAdapter<T, row_stride, col_stride>& R);
- // Convert a generic Euler Angle sequence (in radians) to a 3x3 rotation matrix.
- //
- // Euler Angles define a sequence of 3 rotations about a sequence of axes,
- // typically taken to be the X, Y, or Z axes. The last axis may be the same as
- // the first axis (e.g. ZYZ) per Euler's original definition of his angles
- // (proper Euler angles) or not (e.g. ZYX / yaw-pitch-roll), per common usage in
- // the nautical and aerospace fields (Tait-Bryan angles). The three rotations
- // may be in a global frame of reference (Extrinsic) or in a body fixed frame of
- // reference (Intrinsic) that moves with the rotating object.
- //
- // Internally, Euler Axis sequences are classified by Ken Shoemake's scheme from
- // "Euler angle conversion", Graphics Gems IV, where a choice of axis for the
- // first rotation and 3 binary choices:
- // 1. Parity of the axis permutation. The axis sequence has Even parity if the
- // second axis of rotation is 'greater-than' the first axis of rotation
- // according to the order X<Y<Z<X, otherwise it has Odd parity.
- // 2. Proper Euler Angles v.s. Tait-Bryan Angles
- // 3. Extrinsic Rotations v.s. Intrinsic Rotations
- // compactly represent all 24 possible Euler Angle Conventions
- //
- // One template parameter: EulerSystem must be explicitly given. This parameter
- // is a tag named by 'Extrinsic' or 'Intrinsic' followed by three characters in
- // the set '[XYZ]', specifying the axis sequence, e.g. ceres::ExtrinsicYZY
- // (robotic arms), ceres::IntrinsicZYX (for aerospace), etc.
- //
- // The order of elements in the input array 'euler' follows the axis sequence
- template <typename EulerSystem, typename T>
- inline void EulerAnglesToRotation(const T* euler, T* R);
- template <typename EulerSystem, typename T, int row_stride, int col_stride>
- void EulerAnglesToRotation(const T* euler,
- const MatrixAdapter<T, row_stride, col_stride>& R);
- // Convert a 3x3 rotation matrix to a generic Euler Angle sequence (in radians)
- //
- // Euler Angles define a sequence of 3 rotations about a sequence of axes,
- // typically taken to be the X, Y, or Z axes. The last axis may be the same as
- // the first axis (e.g. ZYZ) per Euler's original definition of his angles
- // (proper Euler angles) or not (e.g. ZYX / yaw-pitch-roll), per common usage in
- // the nautical and aerospace fields (Tait-Bryan angles). The three rotations
- // may be in a global frame of reference (Extrinsic) or in a body fixed frame of
- // reference (Intrinsic) that moves with the rotating object.
- //
- // Internally, Euler Axis sequences are classified by Ken Shoemake's scheme from
- // "Euler angle conversion", Graphics Gems IV, where a choice of axis for the
- // first rotation and 3 binary choices:
- // 1. Oddness of the axis permutation, that defines whether the second axis is
- // 'greater-than' the first axis according to the order X>Y>Z>X)
- // 2. Proper Euler Angles v.s. Tait-Bryan Angles
- // 3. Extrinsic Rotations v.s. Intrinsic Rotations
- // compactly represent all 24 possible Euler Angle Conventions
- //
- // One template parameter: EulerSystem must be explicitly given. This parameter
- // is a tag named by 'Extrinsic' or 'Intrinsic' followed by three characters in
- // the set '[XYZ]', specifying the axis sequence, e.g. ceres::ExtrinsicYZY
- // (robotic arms), ceres::IntrinsicZYX (for aerospace), etc.
- //
- // The order of elements in the output array 'euler' follows the axis sequence
- template <typename EulerSystem, typename T>
- inline void RotationMatrixToEulerAngles(const T* R, T* euler);
- template <typename EulerSystem, typename T, int row_stride, int col_stride>
- void RotationMatrixToEulerAngles(
- const MatrixAdapter<const T, row_stride, col_stride>& R, T* euler);
- // Convert a 4-vector to a 3x3 scaled rotation matrix.
- //
- // The choice of rotation is such that the quaternion [1 0 0 0] goes to an
- // identity matrix and for small a, b, c the quaternion [1 a b c] goes to
- // the matrix
- //
- // [ 0 -c b ]
- // I + 2 [ c 0 -a ] + higher order terms
- // [ -b a 0 ]
- //
- // which corresponds to a Rodrigues approximation, the last matrix being
- // the cross-product matrix of [a b c]. Together with the property that
- // R(q1 * q2) = R(q1) * R(q2) this uniquely defines the mapping from q to R.
- //
- // No normalization of the quaternion is performed, i.e.
- // R = ||q||^2 * Q, where Q is an orthonormal matrix
- // such that det(Q) = 1 and Q*Q' = I
- //
- // WARNING: The rotation matrix is ROW MAJOR
- template <typename T>
- inline void QuaternionToScaledRotation(const T q[4], T R[3 * 3]);
- template <typename T, int row_stride, int col_stride>
- inline void QuaternionToScaledRotation(
- const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R);
- // Same as above except that the rotation matrix is normalized by the
- // Frobenius norm, so that R * R' = I (and det(R) = 1).
- //
- // WARNING: The rotation matrix is ROW MAJOR
- template <typename T>
- inline void QuaternionToRotation(const T q[4], T R[3 * 3]);
- template <typename T, int row_stride, int col_stride>
- inline void QuaternionToRotation(
- const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R);
- // Rotates a point pt by a quaternion q:
- //
- // result = R(q) * pt
- //
- // Assumes the quaternion is unit norm. This assumption allows us to
- // write the transform as (something)*pt + pt, as is clear from the
- // formula below. If you pass in a quaternion with |q|^2 = 2 then you
- // WILL NOT get back 2 times the result you get for a unit quaternion.
- //
- // Inplace rotation is not supported. pt and result must point to different
- // memory locations, otherwise the result will be undefined.
- template <typename T>
- inline void UnitQuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
- // With this function you do not need to assume that q has unit norm.
- // It does assume that the norm is non-zero.
- //
- // Inplace rotation is not supported. pt and result must point to different
- // memory locations, otherwise the result will be undefined.
- template <typename T>
- inline void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]);
- // zw = z * w, where * is the Quaternion product between 4 vectors.
- //
- // Inplace quaternion product is not supported. The resulting quaternion zw must
- // not share the memory with the input quaternion z and w, otherwise the result
- // will be undefined.
- template <typename T>
- inline void QuaternionProduct(const T z[4], const T w[4], T zw[4]);
- // xy = x cross y;
- //
- // Inplace cross product is not supported. The resulting vector x_cross_y must
- // not share the memory with the input vectors x and y, otherwise the result
- // will be undefined.
- template <typename T>
- inline void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]);
- template <typename T>
- inline T DotProduct(const T x[3], const T y[3]);
- // y = R(angle_axis) * x;
- //
- // Inplace rotation is not supported. pt and result must point to different
- // memory locations, otherwise the result will be undefined.
- template <typename T>
- inline void AngleAxisRotatePoint(const T angle_axis[3],
- const T pt[3],
- T result[3]);
- // --- IMPLEMENTATION
- template <typename T, int row_stride, int col_stride>
- struct MatrixAdapter {
- T* pointer_;
- explicit MatrixAdapter(T* pointer) : pointer_(pointer) {}
- T& operator()(int r, int c) const {
- return pointer_[r * row_stride + c * col_stride];
- }
- };
- template <typename T>
- MatrixAdapter<T, 1, 3> ColumnMajorAdapter3x3(T* pointer) {
- return MatrixAdapter<T, 1, 3>(pointer);
- }
- template <typename T>
- MatrixAdapter<T, 3, 1> RowMajorAdapter3x3(T* pointer) {
- return MatrixAdapter<T, 3, 1>(pointer);
- }
- template <typename T>
- inline void AngleAxisToQuaternion(const T* angle_axis, T* quaternion) {
- using std::fpclassify;
- using std::hypot;
- const T& a0 = angle_axis[0];
- const T& a1 = angle_axis[1];
- const T& a2 = angle_axis[2];
- const T theta = hypot(a0, a1, a2);
- // For points not at the origin, the full conversion is numerically stable.
- if (fpclassify(theta) != FP_ZERO) {
- const T half_theta = theta * T(0.5);
- const T k = sin(half_theta) / theta;
- quaternion[0] = cos(half_theta);
- quaternion[1] = a0 * k;
- quaternion[2] = a1 * k;
- quaternion[3] = a2 * k;
- } else {
- // At the origin, sqrt() will produce NaN in the derivative since
- // the argument is zero. By approximating with a Taylor series,
- // and truncating at one term, the value and first derivatives will be
- // computed correctly when Jets are used.
- const T k(0.5);
- quaternion[0] = T(1.0);
- quaternion[1] = a0 * k;
- quaternion[2] = a1 * k;
- quaternion[3] = a2 * k;
- }
- }
- template <typename T>
- inline void QuaternionToAngleAxis(const T* quaternion, T* angle_axis) {
- using std::fpclassify;
- using std::hypot;
- const T& q1 = quaternion[1];
- const T& q2 = quaternion[2];
- const T& q3 = quaternion[3];
- const T sin_theta = hypot(q1, q2, q3);
- // For quaternions representing non-zero rotation, the conversion
- // is numerically stable.
- if (fpclassify(sin_theta) != FP_ZERO) {
- const T& cos_theta = quaternion[0];
- // If cos_theta is negative, theta is greater than pi/2, which
- // means that angle for the angle_axis vector which is 2 * theta
- // would be greater than pi.
- //
- // While this will result in the correct rotation, it does not
- // result in a normalized angle-axis vector.
- //
- // In that case we observe that 2 * theta ~ 2 * theta - 2 * pi,
- // which is equivalent saying
- //
- // theta - pi = atan(sin(theta - pi), cos(theta - pi))
- // = atan(-sin(theta), -cos(theta))
- //
- const T two_theta =
- T(2.0) * ((cos_theta < T(0.0)) ? atan2(-sin_theta, -cos_theta)
- : atan2(sin_theta, cos_theta));
- const T k = two_theta / sin_theta;
- angle_axis[0] = q1 * k;
- angle_axis[1] = q2 * k;
- angle_axis[2] = q3 * k;
- } else {
- // For zero rotation, sqrt() will produce NaN in the derivative since
- // the argument is zero. By approximating with a Taylor series,
- // and truncating at one term, the value and first derivatives will be
- // computed correctly when Jets are used.
- const T k(2.0);
- angle_axis[0] = q1 * k;
- angle_axis[1] = q2 * k;
- angle_axis[2] = q3 * k;
- }
- }
- template <typename T>
- void RotationMatrixToQuaternion(const T* R, T* quaternion) {
- RotationMatrixToQuaternion(ColumnMajorAdapter3x3(R), quaternion);
- }
- // This algorithm comes from "Quaternion Calculus and Fast Animation",
- // Ken Shoemake, 1987 SIGGRAPH course notes
- template <typename T, int row_stride, int col_stride>
- void RotationMatrixToQuaternion(
- const MatrixAdapter<const T, row_stride, col_stride>& R, T* quaternion) {
- const T trace = R(0, 0) + R(1, 1) + R(2, 2);
- if (trace >= 0.0) {
- T t = sqrt(trace + T(1.0));
- quaternion[0] = T(0.5) * t;
- t = T(0.5) / t;
- quaternion[1] = (R(2, 1) - R(1, 2)) * t;
- quaternion[2] = (R(0, 2) - R(2, 0)) * t;
- quaternion[3] = (R(1, 0) - R(0, 1)) * t;
- } else {
- int i = 0;
- if (R(1, 1) > R(0, 0)) {
- i = 1;
- }
- if (R(2, 2) > R(i, i)) {
- i = 2;
- }
- const int j = (i + 1) % 3;
- const int k = (j + 1) % 3;
- T t = sqrt(R(i, i) - R(j, j) - R(k, k) + T(1.0));
- quaternion[i + 1] = T(0.5) * t;
- t = T(0.5) / t;
- quaternion[0] = (R(k, j) - R(j, k)) * t;
- quaternion[j + 1] = (R(j, i) + R(i, j)) * t;
- quaternion[k + 1] = (R(k, i) + R(i, k)) * t;
- }
- }
- // The conversion of a rotation matrix to the angle-axis form is
- // numerically problematic when then rotation angle is close to zero
- // or to Pi. The following implementation detects when these two cases
- // occurs and deals with them by taking code paths that are guaranteed
- // to not perform division by a small number.
- template <typename T>
- inline void RotationMatrixToAngleAxis(const T* R, T* angle_axis) {
- RotationMatrixToAngleAxis(ColumnMajorAdapter3x3(R), angle_axis);
- }
- template <typename T, int row_stride, int col_stride>
- void RotationMatrixToAngleAxis(
- const MatrixAdapter<const T, row_stride, col_stride>& R, T* angle_axis) {
- T quaternion[4];
- RotationMatrixToQuaternion(R, quaternion);
- QuaternionToAngleAxis(quaternion, angle_axis);
- return;
- }
- template <typename T>
- inline void AngleAxisToRotationMatrix(const T* angle_axis, T* R) {
- AngleAxisToRotationMatrix(angle_axis, ColumnMajorAdapter3x3(R));
- }
- template <typename T, int row_stride, int col_stride>
- void AngleAxisToRotationMatrix(
- const T* angle_axis, const MatrixAdapter<T, row_stride, col_stride>& R) {
- using std::fpclassify;
- using std::hypot;
- static const T kOne = T(1.0);
- const T theta = hypot(angle_axis[0], angle_axis[1], angle_axis[2]);
- if (fpclassify(theta) != FP_ZERO) {
- // We want to be careful to only evaluate the square root if the
- // norm of the angle_axis vector is greater than zero. Otherwise
- // we get a division by zero.
- const T wx = angle_axis[0] / theta;
- const T wy = angle_axis[1] / theta;
- const T wz = angle_axis[2] / theta;
- const T costheta = cos(theta);
- const T sintheta = sin(theta);
- // clang-format off
- R(0, 0) = costheta + wx*wx*(kOne - costheta);
- R(1, 0) = wz*sintheta + wx*wy*(kOne - costheta);
- R(2, 0) = -wy*sintheta + wx*wz*(kOne - costheta);
- R(0, 1) = wx*wy*(kOne - costheta) - wz*sintheta;
- R(1, 1) = costheta + wy*wy*(kOne - costheta);
- R(2, 1) = wx*sintheta + wy*wz*(kOne - costheta);
- R(0, 2) = wy*sintheta + wx*wz*(kOne - costheta);
- R(1, 2) = -wx*sintheta + wy*wz*(kOne - costheta);
- R(2, 2) = costheta + wz*wz*(kOne - costheta);
- // clang-format on
- } else {
- // At zero, we switch to using the first order Taylor expansion.
- R(0, 0) = kOne;
- R(1, 0) = angle_axis[2];
- R(2, 0) = -angle_axis[1];
- R(0, 1) = -angle_axis[2];
- R(1, 1) = kOne;
- R(2, 1) = angle_axis[0];
- R(0, 2) = angle_axis[1];
- R(1, 2) = -angle_axis[0];
- R(2, 2) = kOne;
- }
- }
- template <typename EulerSystem, typename T>
- inline void EulerAnglesToRotation(const T* euler, T* R) {
- EulerAnglesToRotation<EulerSystem>(euler, RowMajorAdapter3x3(R));
- }
- template <typename EulerSystem, typename T, int row_stride, int col_stride>
- void EulerAnglesToRotation(const T* euler,
- const MatrixAdapter<T, row_stride, col_stride>& R) {
- using std::cos;
- using std::sin;
- const auto [i, j, k] = EulerSystem::kAxes;
- T ea[3];
- ea[1] = euler[1];
- if constexpr (EulerSystem::kIsIntrinsic) {
- ea[0] = euler[2];
- ea[2] = euler[0];
- } else {
- ea[0] = euler[0];
- ea[2] = euler[2];
- }
- if constexpr (EulerSystem::kIsParityOdd) {
- ea[0] = -ea[0];
- ea[1] = -ea[1];
- ea[2] = -ea[2];
- }
- const T ci = cos(ea[0]);
- const T cj = cos(ea[1]);
- const T ch = cos(ea[2]);
- const T si = sin(ea[0]);
- const T sj = sin(ea[1]);
- const T sh = sin(ea[2]);
- const T cc = ci * ch;
- const T cs = ci * sh;
- const T sc = si * ch;
- const T ss = si * sh;
- if constexpr (EulerSystem::kIsProperEuler) {
- R(i, i) = cj;
- R(i, j) = sj * si;
- R(i, k) = sj * ci;
- R(j, i) = sj * sh;
- R(j, j) = -cj * ss + cc;
- R(j, k) = -cj * cs - sc;
- R(k, i) = -sj * ch;
- R(k, j) = cj * sc + cs;
- R(k, k) = cj * cc - ss;
- } else {
- R(i, i) = cj * ch;
- R(i, j) = sj * sc - cs;
- R(i, k) = sj * cc + ss;
- R(j, i) = cj * sh;
- R(j, j) = sj * ss + cc;
- R(j, k) = sj * cs - sc;
- R(k, i) = -sj;
- R(k, j) = cj * si;
- R(k, k) = cj * ci;
- }
- }
- template <typename EulerSystem, typename T>
- inline void RotationMatrixToEulerAngles(const T* R, T* euler) {
- RotationMatrixToEulerAngles<EulerSystem>(RowMajorAdapter3x3(R), euler);
- }
- template <typename EulerSystem, typename T, int row_stride, int col_stride>
- void RotationMatrixToEulerAngles(
- const MatrixAdapter<const T, row_stride, col_stride>& R, T* euler) {
- using std::atan2;
- using std::fpclassify;
- using std::hypot;
- const auto [i, j, k] = EulerSystem::kAxes;
- T ea[3];
- if constexpr (EulerSystem::kIsProperEuler) {
- const T sy = hypot(R(i, j), R(i, k));
- if (fpclassify(sy) != FP_ZERO) {
- ea[0] = atan2(R(i, j), R(i, k));
- ea[1] = atan2(sy, R(i, i));
- ea[2] = atan2(R(j, i), -R(k, i));
- } else {
- ea[0] = atan2(-R(j, k), R(j, j));
- ea[1] = atan2(sy, R(i, i));
- ea[2] = T(0.0);
- }
- } else {
- const T cy = hypot(R(i, i), R(j, i));
- if (fpclassify(cy) != FP_ZERO) {
- ea[0] = atan2(R(k, j), R(k, k));
- ea[1] = atan2(-R(k, i), cy);
- ea[2] = atan2(R(j, i), R(i, i));
- } else {
- ea[0] = atan2(-R(j, k), R(j, j));
- ea[1] = atan2(-R(k, i), cy);
- ea[2] = T(0.0);
- }
- }
- if constexpr (EulerSystem::kIsParityOdd) {
- ea[0] = -ea[0];
- ea[1] = -ea[1];
- ea[2] = -ea[2];
- }
- euler[1] = ea[1];
- if constexpr (EulerSystem::kIsIntrinsic) {
- euler[0] = ea[2];
- euler[2] = ea[0];
- } else {
- euler[0] = ea[0];
- euler[2] = ea[2];
- }
- // Proper euler angles are defined for angles in
- // [-pi, pi) x [0, pi / 2) x [-pi, pi)
- // which is enforced here
- if constexpr (EulerSystem::kIsProperEuler) {
- const T kPi(constants::pi);
- const T kTwoPi(2.0 * kPi);
- if (euler[1] < T(0.0) || ea[1] > kPi) {
- euler[0] += kPi;
- euler[1] = -euler[1];
- euler[2] -= kPi;
- }
- for (int i = 0; i < 3; ++i) {
- if (euler[i] < -kPi) {
- euler[i] += kTwoPi;
- } else if (euler[i] > kPi) {
- euler[i] -= kTwoPi;
- }
- }
- }
- }
- template <typename T>
- inline void EulerAnglesToRotationMatrix(const T* euler,
- const int row_stride_parameter,
- T* R) {
- EulerAnglesToRotationMatrix(euler, RowMajorAdapter3x3(R));
- }
- template <typename T, int row_stride, int col_stride>
- void EulerAnglesToRotationMatrix(
- const T* euler, const MatrixAdapter<T, row_stride, col_stride>& R) {
- const double kPi = 3.14159265358979323846;
- const T degrees_to_radians(kPi / 180.0);
- const T pitch(euler[0] * degrees_to_radians);
- const T roll(euler[1] * degrees_to_radians);
- const T yaw(euler[2] * degrees_to_radians);
- const T c1 = cos(yaw);
- const T s1 = sin(yaw);
- const T c2 = cos(roll);
- const T s2 = sin(roll);
- const T c3 = cos(pitch);
- const T s3 = sin(pitch);
- R(0, 0) = c1 * c2;
- R(0, 1) = -s1 * c3 + c1 * s2 * s3;
- R(0, 2) = s1 * s3 + c1 * s2 * c3;
- R(1, 0) = s1 * c2;
- R(1, 1) = c1 * c3 + s1 * s2 * s3;
- R(1, 2) = -c1 * s3 + s1 * s2 * c3;
- R(2, 0) = -s2;
- R(2, 1) = c2 * s3;
- R(2, 2) = c2 * c3;
- }
- template <typename T>
- inline void QuaternionToScaledRotation(const T q[4], T R[3 * 3]) {
- QuaternionToScaledRotation(q, RowMajorAdapter3x3(R));
- }
- template <typename T, int row_stride, int col_stride>
- inline void QuaternionToScaledRotation(
- const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R) {
- // Make convenient names for elements of q.
- T a = q[0];
- T b = q[1];
- T c = q[2];
- T d = q[3];
- // This is not to eliminate common sub-expression, but to
- // make the lines shorter so that they fit in 80 columns!
- T aa = a * a;
- T ab = a * b;
- T ac = a * c;
- T ad = a * d;
- T bb = b * b;
- T bc = b * c;
- T bd = b * d;
- T cc = c * c;
- T cd = c * d;
- T dd = d * d;
- // clang-format off
- R(0, 0) = aa + bb - cc - dd; R(0, 1) = T(2) * (bc - ad); R(0, 2) = T(2) * (ac + bd);
- R(1, 0) = T(2) * (ad + bc); R(1, 1) = aa - bb + cc - dd; R(1, 2) = T(2) * (cd - ab);
- R(2, 0) = T(2) * (bd - ac); R(2, 1) = T(2) * (ab + cd); R(2, 2) = aa - bb - cc + dd;
- // clang-format on
- }
- template <typename T>
- inline void QuaternionToRotation(const T q[4], T R[3 * 3]) {
- QuaternionToRotation(q, RowMajorAdapter3x3(R));
- }
- template <typename T, int row_stride, int col_stride>
- inline void QuaternionToRotation(
- const T q[4], const MatrixAdapter<T, row_stride, col_stride>& R) {
- QuaternionToScaledRotation(q, R);
- T normalizer = q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3];
- normalizer = T(1) / normalizer;
- for (int i = 0; i < 3; ++i) {
- for (int j = 0; j < 3; ++j) {
- R(i, j) *= normalizer;
- }
- }
- }
- template <typename T>
- inline void UnitQuaternionRotatePoint(const T q[4],
- const T pt[3],
- T result[3]) {
- DCHECK_NE(pt, result) << "Inplace rotation is not supported.";
- // clang-format off
- T uv0 = q[2] * pt[2] - q[3] * pt[1];
- T uv1 = q[3] * pt[0] - q[1] * pt[2];
- T uv2 = q[1] * pt[1] - q[2] * pt[0];
- uv0 += uv0;
- uv1 += uv1;
- uv2 += uv2;
- result[0] = pt[0] + q[0] * uv0;
- result[1] = pt[1] + q[0] * uv1;
- result[2] = pt[2] + q[0] * uv2;
- result[0] += q[2] * uv2 - q[3] * uv1;
- result[1] += q[3] * uv0 - q[1] * uv2;
- result[2] += q[1] * uv1 - q[2] * uv0;
- // clang-format on
- }
- template <typename T>
- inline void QuaternionRotatePoint(const T q[4], const T pt[3], T result[3]) {
- DCHECK_NE(pt, result) << "Inplace rotation is not supported.";
- // 'scale' is 1 / norm(q).
- const T scale =
- T(1) / sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2] + q[3] * q[3]);
- // Make unit-norm version of q.
- const T unit[4] = {
- scale * q[0],
- scale * q[1],
- scale * q[2],
- scale * q[3],
- };
- UnitQuaternionRotatePoint(unit, pt, result);
- }
- template <typename T>
- inline void QuaternionProduct(const T z[4], const T w[4], T zw[4]) {
- DCHECK_NE(z, zw) << "Inplace quaternion product is not supported.";
- DCHECK_NE(w, zw) << "Inplace quaternion product is not supported.";
- // clang-format off
- zw[0] = z[0] * w[0] - z[1] * w[1] - z[2] * w[2] - z[3] * w[3];
- zw[1] = z[0] * w[1] + z[1] * w[0] + z[2] * w[3] - z[3] * w[2];
- zw[2] = z[0] * w[2] - z[1] * w[3] + z[2] * w[0] + z[3] * w[1];
- zw[3] = z[0] * w[3] + z[1] * w[2] - z[2] * w[1] + z[3] * w[0];
- // clang-format on
- }
- // xy = x cross y;
- template <typename T>
- inline void CrossProduct(const T x[3], const T y[3], T x_cross_y[3]) {
- DCHECK_NE(x, x_cross_y) << "Inplace cross product is not supported.";
- DCHECK_NE(y, x_cross_y) << "Inplace cross product is not supported.";
- x_cross_y[0] = x[1] * y[2] - x[2] * y[1];
- x_cross_y[1] = x[2] * y[0] - x[0] * y[2];
- x_cross_y[2] = x[0] * y[1] - x[1] * y[0];
- }
- template <typename T>
- inline T DotProduct(const T x[3], const T y[3]) {
- return (x[0] * y[0] + x[1] * y[1] + x[2] * y[2]);
- }
- template <typename T>
- inline void AngleAxisRotatePoint(const T angle_axis[3],
- const T pt[3],
- T result[3]) {
- DCHECK_NE(pt, result) << "Inplace rotation is not supported.";
- using std::fpclassify;
- using std::hypot;
- const T theta = hypot(angle_axis[0], angle_axis[1], angle_axis[2]);
- if (fpclassify(theta) != FP_ZERO) {
- // Away from zero, use the rodriguez formula
- //
- // result = pt costheta +
- // (w x pt) * sintheta +
- // w (w . pt) (1 - costheta)
- //
- // We want to be careful to only evaluate the square root if the
- // norm of the angle_axis vector is greater than zero. Otherwise
- // we get a division by zero.
- //
- const T costheta = cos(theta);
- const T sintheta = sin(theta);
- const T theta_inverse = T(1.0) / theta;
- const T w[3] = {angle_axis[0] * theta_inverse,
- angle_axis[1] * theta_inverse,
- angle_axis[2] * theta_inverse};
- // Explicitly inlined evaluation of the cross product for
- // performance reasons.
- const T w_cross_pt[3] = {w[1] * pt[2] - w[2] * pt[1],
- w[2] * pt[0] - w[0] * pt[2],
- w[0] * pt[1] - w[1] * pt[0]};
- const T tmp =
- (w[0] * pt[0] + w[1] * pt[1] + w[2] * pt[2]) * (T(1.0) - costheta);
- result[0] = pt[0] * costheta + w_cross_pt[0] * sintheta + w[0] * tmp;
- result[1] = pt[1] * costheta + w_cross_pt[1] * sintheta + w[1] * tmp;
- result[2] = pt[2] * costheta + w_cross_pt[2] * sintheta + w[2] * tmp;
- } else {
- // At zero, the first order Taylor approximation of the rotation
- // matrix R corresponding to a vector w and angle theta is
- //
- // R = I + hat(w) * sin(theta)
- //
- // But sintheta ~ theta and theta * w = angle_axis, which gives us
- //
- // R = I + hat(angle_axis)
- //
- // and actually performing multiplication with the point pt, gives us
- // R * pt = pt + angle_axis x pt.
- //
- // Switching to the Taylor expansion at zero provides meaningful
- // derivatives when evaluated using Jets.
- //
- // Explicitly inlined evaluation of the cross product for
- // performance reasons.
- const T w_cross_pt[3] = {angle_axis[1] * pt[2] - angle_axis[2] * pt[1],
- angle_axis[2] * pt[0] - angle_axis[0] * pt[2],
- angle_axis[0] * pt[1] - angle_axis[1] * pt[0]};
- result[0] = pt[0] + w_cross_pt[0];
- result[1] = pt[1] + w_cross_pt[1];
- result[2] = pt[2] + w_cross_pt[2];
- }
- }
- } // namespace ceres
- #endif // CERES_PUBLIC_ROTATION_H_
|