12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433 |
- #ifndef CERES_PUBLIC_JET_H_
- #define CERES_PUBLIC_JET_H_
- #include <cmath>
- #include <complex>
- #include <iosfwd>
- #include <iostream> // NOLINT
- #include <limits>
- #include <numeric>
- #include <string>
- #include <type_traits>
- #include "Eigen/Core"
- #include "ceres/internal/jet_traits.h"
- #include "ceres/internal/port.h"
- #include "ceres/jet_fwd.h"
- template <typename T, int N, typename U>
- struct std::common_type<T, ceres::Jet<U, N>> {
- using type = ceres::Jet<common_type_t<T, U>, N>;
- };
- template <typename T, int N, typename U>
- struct std::common_type<ceres::Jet<T, N>, U> {
- using type = ceres::Jet<common_type_t<T, U>, N>;
- };
- template <typename T, int N, typename U>
- struct std::common_type<ceres::Jet<T, N>, ceres::Jet<U, N>> {
- using type = ceres::Jet<common_type_t<T, U>, N>;
- };
- namespace ceres {
- template <typename T, int N>
- struct Jet {
- enum { DIMENSION = N };
- using Scalar = T;
-
-
-
-
-
- Jet() : a() { v.setConstant(Scalar()); }
-
- explicit Jet(const T& value) {
- a = value;
- v.setConstant(Scalar());
- }
-
- Jet(const T& value, int k) {
- a = value;
- v.setConstant(Scalar());
- v[k] = T(1.0);
- }
-
-
-
-
- template <typename Derived>
- EIGEN_STRONG_INLINE Jet(const T& a, const Eigen::DenseBase<Derived>& v)
- : a(a), v(v) {}
-
- Jet<T, N>& operator+=(const Jet<T, N>& y) {
- *this = *this + y;
- return *this;
- }
- Jet<T, N>& operator-=(const Jet<T, N>& y) {
- *this = *this - y;
- return *this;
- }
- Jet<T, N>& operator*=(const Jet<T, N>& y) {
- *this = *this * y;
- return *this;
- }
- Jet<T, N>& operator/=(const Jet<T, N>& y) {
- *this = *this / y;
- return *this;
- }
-
- Jet<T, N>& operator+=(const T& s) {
- *this = *this + s;
- return *this;
- }
- Jet<T, N>& operator-=(const T& s) {
- *this = *this - s;
- return *this;
- }
- Jet<T, N>& operator*=(const T& s) {
- *this = *this * s;
- return *this;
- }
- Jet<T, N>& operator/=(const T& s) {
- *this = *this / s;
- return *this;
- }
-
- T a;
-
- Eigen::Matrix<T, N, 1> v;
-
-
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW
- };
- template <typename T, int N>
- inline Jet<T, N> const& operator+(const Jet<T, N>& f) {
- return f;
- }
- template <typename T, int N>
- inline Jet<T, N> operator-(const Jet<T, N>& f) {
- return Jet<T, N>(-f.a, -f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> operator+(const Jet<T, N>& f, const Jet<T, N>& g) {
- return Jet<T, N>(f.a + g.a, f.v + g.v);
- }
- template <typename T, int N>
- inline Jet<T, N> operator+(const Jet<T, N>& f, T s) {
- return Jet<T, N>(f.a + s, f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> operator+(T s, const Jet<T, N>& f) {
- return Jet<T, N>(f.a + s, f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> operator-(const Jet<T, N>& f, const Jet<T, N>& g) {
- return Jet<T, N>(f.a - g.a, f.v - g.v);
- }
- template <typename T, int N>
- inline Jet<T, N> operator-(const Jet<T, N>& f, T s) {
- return Jet<T, N>(f.a - s, f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> operator-(T s, const Jet<T, N>& f) {
- return Jet<T, N>(s - f.a, -f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> operator*(const Jet<T, N>& f, const Jet<T, N>& g) {
- return Jet<T, N>(f.a * g.a, f.a * g.v + f.v * g.a);
- }
- template <typename T, int N>
- inline Jet<T, N> operator*(const Jet<T, N>& f, T s) {
- return Jet<T, N>(f.a * s, f.v * s);
- }
- template <typename T, int N>
- inline Jet<T, N> operator*(T s, const Jet<T, N>& f) {
- return Jet<T, N>(f.a * s, f.v * s);
- }
- template <typename T, int N>
- inline Jet<T, N> operator/(const Jet<T, N>& f, const Jet<T, N>& g) {
-
-
-
-
-
-
-
- const T g_a_inverse = T(1.0) / g.a;
- const T f_a_by_g_a = f.a * g_a_inverse;
- return Jet<T, N>(f_a_by_g_a, (f.v - f_a_by_g_a * g.v) * g_a_inverse);
- }
- template <typename T, int N>
- inline Jet<T, N> operator/(T s, const Jet<T, N>& g) {
- const T minus_s_g_a_inverse2 = -s / (g.a * g.a);
- return Jet<T, N>(s / g.a, g.v * minus_s_g_a_inverse2);
- }
- template <typename T, int N>
- inline Jet<T, N> operator/(const Jet<T, N>& f, T s) {
- const T s_inverse = T(1.0) / s;
- return Jet<T, N>(f.a * s_inverse, f.v * s_inverse);
- }
- #define CERES_DEFINE_JET_COMPARISON_OPERATOR(op) \
- template <typename Lhs, \
- typename Rhs, \
- std::enable_if_t<PromotableJetOperands_v<Lhs, Rhs>>* = nullptr> \
- constexpr bool operator op(const Lhs& f, const Rhs& g) noexcept( \
- noexcept(internal::AsScalar(f) op internal::AsScalar(g))) { \
- using internal::AsScalar; \
- return AsScalar(f) op AsScalar(g); \
- }
- CERES_DEFINE_JET_COMPARISON_OPERATOR(<)
- CERES_DEFINE_JET_COMPARISON_OPERATOR(<=)
- CERES_DEFINE_JET_COMPARISON_OPERATOR(>)
- CERES_DEFINE_JET_COMPARISON_OPERATOR(>=)
- CERES_DEFINE_JET_COMPARISON_OPERATOR(==)
- CERES_DEFINE_JET_COMPARISON_OPERATOR(!=)
- #undef CERES_DEFINE_JET_COMPARISON_OPERATOR
- using std::abs;
- using std::acos;
- using std::asin;
- using std::atan;
- using std::atan2;
- using std::cbrt;
- using std::ceil;
- using std::copysign;
- using std::cos;
- using std::cosh;
- using std::erf;
- using std::erfc;
- using std::exp;
- using std::exp2;
- using std::expm1;
- using std::fdim;
- using std::floor;
- using std::fma;
- using std::fmax;
- using std::fmin;
- using std::fpclassify;
- using std::hypot;
- using std::isfinite;
- using std::isinf;
- using std::isnan;
- using std::isnormal;
- using std::log;
- using std::log10;
- using std::log1p;
- using std::log2;
- using std::norm;
- using std::pow;
- using std::signbit;
- using std::sin;
- using std::sinh;
- using std::sqrt;
- using std::tan;
- using std::tanh;
- #if defined(_MSC_VER)
- inline bool isgreater(double lhs,
- double rhs) noexcept(noexcept(std::isgreater(lhs, rhs))) {
- return std::isgreater(lhs, rhs);
- }
- inline bool isless(double lhs,
- double rhs) noexcept(noexcept(std::isless(lhs, rhs))) {
- return std::isless(lhs, rhs);
- }
- inline bool islessequal(double lhs,
- double rhs) noexcept(noexcept(std::islessequal(lhs,
- rhs))) {
- return std::islessequal(lhs, rhs);
- }
- inline bool isgreaterequal(double lhs, double rhs) noexcept(
- noexcept(std::isgreaterequal(lhs, rhs))) {
- return std::isgreaterequal(lhs, rhs);
- }
- inline bool islessgreater(double lhs, double rhs) noexcept(
- noexcept(std::islessgreater(lhs, rhs))) {
- return std::islessgreater(lhs, rhs);
- }
- inline bool isunordered(double lhs,
- double rhs) noexcept(noexcept(std::isunordered(lhs,
- rhs))) {
- return std::isunordered(lhs, rhs);
- }
- #else
- using std::isgreater;
- using std::isgreaterequal;
- using std::isless;
- using std::islessequal;
- using std::islessgreater;
- using std::isunordered;
- #endif
- #ifdef CERES_HAS_CPP20
- using std::lerp;
- using std::midpoint;
- #endif
- CERES_DEPRECATED_WITH_MSG("ceres::IsFinite will be removed in a future Ceres Solver release. Please use ceres::isfinite.")
- inline bool IsFinite(double x) { return std::isfinite(x); }
- CERES_DEPRECATED_WITH_MSG("ceres::IsInfinite will be removed in a future Ceres Solver release. Please use ceres::isinf.")
- inline bool IsInfinite(double x) { return std::isinf(x); }
- CERES_DEPRECATED_WITH_MSG("ceres::IsNaN will be removed in a future Ceres Solver release. Please use ceres::isnan.")
- inline bool IsNaN(double x) { return std::isnan(x); }
- CERES_DEPRECATED_WITH_MSG("ceres::IsNormal will be removed in a future Ceres Solver release. Please use ceres::isnormal.")
- inline bool IsNormal(double x) { return std::isnormal(x); }
- template <typename T, int N>
- inline Jet<T, N> abs(const Jet<T, N>& f) {
- return Jet<T, N>(abs(f.a), copysign(T(1), f.a) * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> copysign(const Jet<T, N>& f, const Jet<T, N> g) {
-
-
- T d = fpclassify(g) == FP_ZERO ? std::numeric_limits<T>::infinity() : T(0);
- T sa = copysign(T(1), f.a);
- T sb = copysign(T(1), g.a);
-
-
-
-
-
- return Jet<T, N>(copysign(f.a, g.a), sa * sb * f.v + abs(f.a) * d * g.v);
- }
- template <typename T, int N>
- inline Jet<T, N> log(const Jet<T, N>& f) {
- const T a_inverse = T(1.0) / f.a;
- return Jet<T, N>(log(f.a), f.v * a_inverse);
- }
- template <typename T, int N>
- inline Jet<T, N> log10(const Jet<T, N>& f) {
-
- const T a_inverse = T(1.0) / (f.a * log(T(10.0)));
- return Jet<T, N>(log10(f.a), f.v * a_inverse);
- }
- template <typename T, int N>
- inline Jet<T, N> log1p(const Jet<T, N>& f) {
- const T a_inverse = T(1.0) / (T(1.0) + f.a);
- return Jet<T, N>(log1p(f.a), f.v * a_inverse);
- }
- template <typename T, int N>
- inline Jet<T, N> exp(const Jet<T, N>& f) {
- const T tmp = exp(f.a);
- return Jet<T, N>(tmp, tmp * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> expm1(const Jet<T, N>& f) {
- const T tmp = expm1(f.a);
- const T expa = tmp + T(1.0);
- return Jet<T, N>(tmp, expa * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> sqrt(const Jet<T, N>& f) {
- const T tmp = sqrt(f.a);
- const T two_a_inverse = T(1.0) / (T(2.0) * tmp);
- return Jet<T, N>(tmp, f.v * two_a_inverse);
- }
- template <typename T, int N>
- inline Jet<T, N> cos(const Jet<T, N>& f) {
- return Jet<T, N>(cos(f.a), -sin(f.a) * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> acos(const Jet<T, N>& f) {
- const T tmp = -T(1.0) / sqrt(T(1.0) - f.a * f.a);
- return Jet<T, N>(acos(f.a), tmp * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> sin(const Jet<T, N>& f) {
- return Jet<T, N>(sin(f.a), cos(f.a) * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> asin(const Jet<T, N>& f) {
- const T tmp = T(1.0) / sqrt(T(1.0) - f.a * f.a);
- return Jet<T, N>(asin(f.a), tmp * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> tan(const Jet<T, N>& f) {
- const T tan_a = tan(f.a);
- const T tmp = T(1.0) + tan_a * tan_a;
- return Jet<T, N>(tan_a, tmp * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> atan(const Jet<T, N>& f) {
- const T tmp = T(1.0) / (T(1.0) + f.a * f.a);
- return Jet<T, N>(atan(f.a), tmp * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> sinh(const Jet<T, N>& f) {
- return Jet<T, N>(sinh(f.a), cosh(f.a) * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> cosh(const Jet<T, N>& f) {
- return Jet<T, N>(cosh(f.a), sinh(f.a) * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> tanh(const Jet<T, N>& f) {
- const T tanh_a = tanh(f.a);
- const T tmp = T(1.0) - tanh_a * tanh_a;
- return Jet<T, N>(tanh_a, tmp * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> floor(const Jet<T, N>& f) {
- return Jet<T, N>(floor(f.a));
- }
- template <typename T, int N>
- inline Jet<T, N> ceil(const Jet<T, N>& f) {
- return Jet<T, N>(ceil(f.a));
- }
- template <typename T, int N>
- inline Jet<T, N> cbrt(const Jet<T, N>& f) {
- const T derivative = T(1.0) / (T(3.0) * cbrt(f.a * f.a));
- return Jet<T, N>(cbrt(f.a), f.v * derivative);
- }
- template <typename T, int N>
- inline Jet<T, N> exp2(const Jet<T, N>& f) {
- const T tmp = exp2(f.a);
- const T derivative = tmp * log(T(2));
- return Jet<T, N>(tmp, f.v * derivative);
- }
- template <typename T, int N>
- inline Jet<T, N> log2(const Jet<T, N>& f) {
- const T derivative = T(1.0) / (f.a * log(T(2)));
- return Jet<T, N>(log2(f.a), f.v * derivative);
- }
- template <typename T, int N>
- inline Jet<T, N> hypot(const Jet<T, N>& x, const Jet<T, N>& y) {
-
-
-
-
-
- const T tmp = hypot(x.a, y.a);
- return Jet<T, N>(tmp, x.a / tmp * x.v + y.a / tmp * y.v);
- }
- template <typename T, int N>
- inline Jet<T, N> hypot(const Jet<T, N>& x,
- const Jet<T, N>& y,
- const Jet<T, N>& z) {
-
-
-
-
-
-
-
-
- const T tmp = hypot(x.a, y.a, z.a);
- return Jet<T, N>(tmp, x.a / tmp * x.v + y.a / tmp * y.v + z.a / tmp * z.v);
- }
- template <typename T, int N>
- inline Jet<T, N> fma(const Jet<T, N>& x,
- const Jet<T, N>& y,
- const Jet<T, N>& z) {
-
-
-
- return Jet<T, N>(fma(x.a, y.a, z.a), y.a * x.v + x.a * y.v + z.v);
- }
- template <typename Lhs,
- typename Rhs,
- std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
- inline decltype(auto) fmax(const Lhs& x, const Rhs& y) {
- using J = std::common_type_t<Lhs, Rhs>;
-
-
- if (isnan(x) || isnan(y) || islessgreater(x, y)) {
- return isnan(x) || isless(x, y) ? J{y} : J{x};
- }
-
- #if defined(CERES_HAS_CPP20)
- return midpoint(J{x}, J{y});
- #else
- return (J{x} + J{y}) * typename J::Scalar(0.5);
- #endif
- }
- template <typename Lhs,
- typename Rhs,
- std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
- inline decltype(auto) fmin(const Lhs& x, const Rhs& y) {
- using J = std::common_type_t<Lhs, Rhs>;
-
-
- if (isnan(x) || isnan(y) || islessgreater(x, y)) {
- return isnan(x) || isgreater(x, y) ? J{y} : J{x};
- }
-
- #if defined(CERES_HAS_CPP20)
- return midpoint(J{x}, J{y});
- #else
- return (J{x} + J{y}) * typename J::Scalar(0.5);
- #endif
- }
- template <typename Lhs,
- typename Rhs,
- std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
- inline decltype(auto) fdim(const Lhs& f, const Rhs& g) {
- using J = std::common_type_t<Lhs, Rhs>;
- if (isnan(f) || isnan(g)) {
- return std::numeric_limits<J>::quiet_NaN();
- }
- return isgreater(f, g) ? J{f - g} : J{};
- }
- template <typename T, int N>
- inline Jet<T, N> erf(const Jet<T, N>& x) {
-
-
-
-
-
-
-
- return Jet<T, N>(erf(x.a), x.v * exp(-x.a * x.a) * (T(1) / sqrt(atan(T(1)))));
- }
- template <typename T, int N>
- inline Jet<T, N> erfc(const Jet<T, N>& x) {
-
- return Jet<T, N>(erfc(x.a),
- -x.v * exp(-x.a * x.a) * (T(1) / sqrt(atan(T(1)))));
- }
- inline double BesselJ0(double x) {
- CERES_DISABLE_DEPRECATED_WARNING
- return j0(x);
- CERES_RESTORE_DEPRECATED_WARNING
- }
- inline double BesselJ1(double x) {
- CERES_DISABLE_DEPRECATED_WARNING
- return j1(x);
- CERES_RESTORE_DEPRECATED_WARNING
- }
- inline double BesselJn(int n, double x) {
- CERES_DISABLE_DEPRECATED_WARNING
- return jn(n, x);
- CERES_RESTORE_DEPRECATED_WARNING
- }
- template <typename T, int N>
- inline Jet<T, N> BesselJ0(const Jet<T, N>& f) {
- return Jet<T, N>(BesselJ0(f.a), -BesselJ1(f.a) * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> BesselJ1(const Jet<T, N>& f) {
- return Jet<T, N>(BesselJ1(f.a),
- T(0.5) * (BesselJ0(f.a) - BesselJn(2, f.a)) * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> BesselJn(int n, const Jet<T, N>& f) {
- return Jet<T, N>(
- BesselJn(n, f.a),
- T(0.5) * (BesselJn(n - 1, f.a) - BesselJn(n + 1, f.a)) * f.v);
- }
- template <typename T, int N>
- inline bool isfinite(const Jet<T, N>& f) {
- return isfinite(f.a);
- }
- template <typename T, int N>
- inline bool isinf(const Jet<T, N>& f) {
- return isinf(f.a);
- }
- template <typename T, int N>
- inline bool isnan(const Jet<T, N>& f) {
- return isnan(f.a);
- }
- template <typename T, int N>
- inline bool isnormal(const Jet<T, N>& f) {
- return isnormal(f.a);
- }
- template <typename Lhs,
- typename Rhs,
- std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
- inline bool isless(const Lhs& f, const Rhs& g) {
- using internal::AsScalar;
- return isless(AsScalar(f), AsScalar(g));
- }
- template <typename Lhs,
- typename Rhs,
- std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
- inline bool isgreater(const Lhs& f, const Rhs& g) {
- using internal::AsScalar;
- return isgreater(AsScalar(f), AsScalar(g));
- }
- template <typename Lhs,
- typename Rhs,
- std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
- inline bool islessequal(const Lhs& f, const Rhs& g) {
- using internal::AsScalar;
- return islessequal(AsScalar(f), AsScalar(g));
- }
- template <typename Lhs,
- typename Rhs,
- std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
- inline bool islessgreater(const Lhs& f, const Rhs& g) {
- using internal::AsScalar;
- return islessgreater(AsScalar(f), AsScalar(g));
- }
- template <typename Lhs,
- typename Rhs,
- std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
- inline bool isgreaterequal(const Lhs& f, const Rhs& g) {
- using internal::AsScalar;
- return isgreaterequal(AsScalar(f), AsScalar(g));
- }
- template <typename Lhs,
- typename Rhs,
- std::enable_if_t<CompatibleJetOperands_v<Lhs, Rhs>>* = nullptr>
- inline bool isunordered(const Lhs& f, const Rhs& g) {
- using internal::AsScalar;
- return isunordered(AsScalar(f), AsScalar(g));
- }
- template <typename T, int N>
- inline int fpclassify(const Jet<T, N>& f) {
- return fpclassify(f.a);
- }
- template <typename T, int N>
- inline bool signbit(const Jet<T, N>& f) {
- return signbit(f.a);
- }
- template <typename T, int N>
- CERES_DEPRECATED_WITH_MSG(
- "ceres::IsFinite will be removed in a future Ceres Solver release. Please "
- "use ceres::isfinite.")
- inline bool IsFinite(const Jet<T, N>& f) {
- return isfinite(f);
- }
- template <typename T, int N>
- CERES_DEPRECATED_WITH_MSG(
- "ceres::IsNaN will be removed in a future Ceres Solver release. Please use "
- "ceres::isnan.")
- inline bool IsNaN(const Jet<T, N>& f) {
- return isnan(f);
- }
- template <typename T, int N>
- CERES_DEPRECATED_WITH_MSG(
- "ceres::IsNormal will be removed in a future Ceres Solver release. Please "
- "use ceres::isnormal.")
- inline bool IsNormal(const Jet<T, N>& f) {
- return isnormal(f);
- }
- template <typename T, int N>
- CERES_DEPRECATED_WITH_MSG(
- "ceres::IsInfinite will be removed in a future Ceres Solver release. "
- "Please use ceres::isinf.")
- inline bool IsInfinite(const Jet<T, N>& f) {
- return isinf(f);
- }
- #ifdef CERES_HAS_CPP20
- template <typename T, int N>
- inline Jet<T, N> lerp(const Jet<T, N>& a,
- const Jet<T, N>& b,
- const Jet<T, N>& t) {
- return Jet<T, N>{lerp(a.a, b.a, t.a),
- (T(1) - t.a) * a.v + t.a * b.v + (b.a - a.a) * t.v};
- }
- template <typename T, int N>
- inline Jet<T, N> midpoint(const Jet<T, N>& a, const Jet<T, N>& b) {
- Jet<T, N> result{midpoint(a.a, b.a)};
-
-
- for (int i = 0; i < N; ++i) {
- result.v[i] = midpoint(a.v[i], b.v[i]);
- }
- return result;
- }
- #endif
- template <typename T, int N>
- inline Jet<T, N> atan2(const Jet<T, N>& g, const Jet<T, N>& f) {
-
-
-
-
- T const tmp = T(1.0) / (f.a * f.a + g.a * g.a);
- return Jet<T, N>(atan2(g.a, f.a), tmp * (-g.a * f.v + f.a * g.v));
- }
- template <typename T, int N>
- inline Jet<T, N> norm(const Jet<T, N>& f) {
- return Jet<T, N>(norm(f.a), T(2) * f.a * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> pow(const Jet<T, N>& f, double g) {
- T const tmp = g * pow(f.a, g - T(1.0));
- return Jet<T, N>(pow(f.a, g), tmp * f.v);
- }
- template <typename T, int N>
- inline Jet<T, N> pow(T f, const Jet<T, N>& g) {
- Jet<T, N> result;
- if (fpclassify(f) == FP_ZERO && g > 0) {
-
- result = Jet<T, N>(T(0.0));
- } else {
- if (f < 0 && g == floor(g.a)) {
- result = Jet<T, N>(pow(f, g.a));
- for (int i = 0; i < N; i++) {
- if (fpclassify(g.v[i]) != FP_ZERO) {
-
- result.v[i] = std::numeric_limits<T>::quiet_NaN();
- }
- }
- } else {
-
- T const tmp = pow(f, g.a);
- result = Jet<T, N>(tmp, log(f) * tmp * g.v);
- }
- }
- return result;
- }
- template <typename T, int N>
- inline Jet<T, N> pow(const Jet<T, N>& f, const Jet<T, N>& g) {
- Jet<T, N> result;
- if (fpclassify(f) == FP_ZERO && g >= 1) {
-
- if (g > 1) {
- result = Jet<T, N>(T(0.0));
- } else {
- result = f;
- }
- } else {
- if (f < 0 && g == floor(g.a)) {
-
- T const tmp = g.a * pow(f.a, g.a - T(1.0));
- result = Jet<T, N>(pow(f.a, g.a), tmp * f.v);
- for (int i = 0; i < N; i++) {
- if (fpclassify(g.v[i]) != FP_ZERO) {
-
- result.v[i] = T(std::numeric_limits<double>::quiet_NaN());
- }
- }
- } else {
-
-
-
- T const tmp1 = pow(f.a, g.a);
- T const tmp2 = g.a * pow(f.a, g.a - T(1.0));
- T const tmp3 = tmp1 * log(f.a);
- result = Jet<T, N>(tmp1, tmp2 * f.v + tmp3 * g.v);
- }
- }
- return result;
- }
- template <typename T, int N>
- inline std::ostream& operator<<(std::ostream& s, const Jet<T, N>& z) {
- s << "[" << z.a << " ; ";
- for (int i = 0; i < N; ++i) {
- s << z.v[i];
- if (i != N - 1) {
- s << ", ";
- }
- }
- s << "]";
- return s;
- }
- }
- namespace std {
- template <typename T, int N>
- struct numeric_limits<ceres::Jet<T, N>> {
- static constexpr bool is_specialized = true;
- static constexpr bool is_signed = std::numeric_limits<T>::is_signed;
- static constexpr bool is_integer = std::numeric_limits<T>::is_integer;
- static constexpr bool is_exact = std::numeric_limits<T>::is_exact;
- static constexpr bool has_infinity = std::numeric_limits<T>::has_infinity;
- static constexpr bool has_quiet_NaN = std::numeric_limits<T>::has_quiet_NaN;
- static constexpr bool has_signaling_NaN =
- std::numeric_limits<T>::has_signaling_NaN;
- static constexpr bool is_iec559 = std::numeric_limits<T>::is_iec559;
- static constexpr bool is_bounded = std::numeric_limits<T>::is_bounded;
- static constexpr bool is_modulo = std::numeric_limits<T>::is_modulo;
-
-
-
- CERES_DISABLE_DEPRECATED_WARNING
- static constexpr std::float_denorm_style has_denorm =
- std::numeric_limits<T>::has_denorm;
- CERES_RESTORE_DEPRECATED_WARNING
- static constexpr std::float_round_style round_style =
- std::numeric_limits<T>::round_style;
- static constexpr int digits = std::numeric_limits<T>::digits;
- static constexpr int digits10 = std::numeric_limits<T>::digits10;
- static constexpr int max_digits10 = std::numeric_limits<T>::max_digits10;
- static constexpr int radix = std::numeric_limits<T>::radix;
- static constexpr int min_exponent = std::numeric_limits<T>::min_exponent;
- static constexpr int min_exponent10 = std::numeric_limits<T>::max_exponent10;
- static constexpr int max_exponent = std::numeric_limits<T>::max_exponent;
- static constexpr int max_exponent10 = std::numeric_limits<T>::max_exponent10;
- static constexpr bool traps = std::numeric_limits<T>::traps;
- static constexpr bool tinyness_before =
- std::numeric_limits<T>::tinyness_before;
- static constexpr ceres::Jet<T, N> min
- CERES_PREVENT_MACRO_SUBSTITUTION() noexcept {
- return ceres::Jet<T, N>((std::numeric_limits<T>::min)());
- }
- static constexpr ceres::Jet<T, N> lowest() noexcept {
- return ceres::Jet<T, N>(std::numeric_limits<T>::lowest());
- }
- static constexpr ceres::Jet<T, N> epsilon() noexcept {
- return ceres::Jet<T, N>(std::numeric_limits<T>::epsilon());
- }
- static constexpr ceres::Jet<T, N> round_error() noexcept {
- return ceres::Jet<T, N>(std::numeric_limits<T>::round_error());
- }
- static constexpr ceres::Jet<T, N> infinity() noexcept {
- return ceres::Jet<T, N>(std::numeric_limits<T>::infinity());
- }
- static constexpr ceres::Jet<T, N> quiet_NaN() noexcept {
- return ceres::Jet<T, N>(std::numeric_limits<T>::quiet_NaN());
- }
- static constexpr ceres::Jet<T, N> signaling_NaN() noexcept {
- return ceres::Jet<T, N>(std::numeric_limits<T>::signaling_NaN());
- }
- static constexpr ceres::Jet<T, N> denorm_min() noexcept {
- return ceres::Jet<T, N>(std::numeric_limits<T>::denorm_min());
- }
- static constexpr ceres::Jet<T, N> max
- CERES_PREVENT_MACRO_SUBSTITUTION() noexcept {
- return ceres::Jet<T, N>((std::numeric_limits<T>::max)());
- }
- };
- }
- namespace Eigen {
- template <typename T, int N>
- struct NumTraits<ceres::Jet<T, N>> {
- using Real = ceres::Jet<T, N>;
- using NonInteger = ceres::Jet<T, N>;
- using Nested = ceres::Jet<T, N>;
- using Literal = ceres::Jet<T, N>;
- static typename ceres::Jet<T, N> dummy_precision() {
- return ceres::Jet<T, N>(1e-12);
- }
- static inline Real epsilon() {
- return Real(std::numeric_limits<T>::epsilon());
- }
- static inline int digits10() { return NumTraits<T>::digits10(); }
- static inline int max_digits10() { return NumTraits<T>::max_digits10(); }
- enum {
- IsComplex = 0,
- IsInteger = 0,
- IsSigned,
- ReadCost = 1,
- AddCost = 1,
-
- MulCost = 3,
- HasFloatingPoint = 1,
- RequireInitialization = 1
- };
- template <bool Vectorized>
- struct Div {
- enum {
- #if defined(EIGEN_VECTORIZE_AVX)
- AVX = true,
- #else
- AVX = false,
- #endif
-
-
- Cost = 3
- };
- };
- static inline Real highest() { return Real((std::numeric_limits<T>::max)()); }
- static inline Real lowest() { return Real(-(std::numeric_limits<T>::max)()); }
- };
- template <typename BinaryOp, typename T, int N>
- struct ScalarBinaryOpTraits<ceres::Jet<T, N>, T, BinaryOp> {
- using ReturnType = ceres::Jet<T, N>;
- };
- template <typename BinaryOp, typename T, int N>
- struct ScalarBinaryOpTraits<T, ceres::Jet<T, N>, BinaryOp> {
- using ReturnType = ceres::Jet<T, N>;
- };
- }
- #endif
|