123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: jodebo_beck@gmx.de (Johannes Beck)
- //
- #ifndef CERES_PUBLIC_INTERNAL_LINE_PARAMETERIZATION_H_
- #define CERES_PUBLIC_INTERNAL_LINE_PARAMETERIZATION_H_
- #include "householder_vector.h"
- namespace ceres {
- template <int AmbientSpaceDimension>
- bool LineParameterization<AmbientSpaceDimension>::Plus(
- const double* x_ptr,
- const double* delta_ptr,
- double* x_plus_delta_ptr) const {
- // We seek a box plus operator of the form
- //
- // [o*, d*] = Plus([o, d], [delta_o, delta_d])
- //
- // where o is the origin point, d is the direction vector, delta_o is
- // the delta of the origin point and delta_d the delta of the direction and
- // o* and d* is the updated origin point and direction.
- //
- // We separate the Plus operator into the origin point and directional part
- // d* = Plus_d(d, delta_d)
- // o* = Plus_o(o, d, delta_o)
- //
- // The direction update function Plus_d is the same as for the homogeneous
- // vector parameterization:
- //
- // d* = H_{v(d)} [0.5 sinc(0.5 |delta_d|) delta_d, cos(0.5 |delta_d|)]^T
- //
- // where H is the householder matrix
- // H_{v} = I - (2 / |v|^2) v v^T
- // and
- // v(d) = d - sign(d_n) |d| e_n.
- //
- // The origin point update function Plus_o is defined as
- //
- // o* = o + H_{v(d)} [0.5 delta_o, 0]^T.
- static constexpr int kDim = AmbientSpaceDimension;
- using AmbientVector = Eigen::Matrix<double, kDim, 1>;
- using AmbientVectorRef = Eigen::Map<Eigen::Matrix<double, kDim, 1>>;
- using ConstAmbientVectorRef =
- Eigen::Map<const Eigen::Matrix<double, kDim, 1>>;
- using ConstTangentVectorRef =
- Eigen::Map<const Eigen::Matrix<double, kDim - 1, 1>>;
- ConstAmbientVectorRef o(x_ptr);
- ConstAmbientVectorRef d(x_ptr + kDim);
- ConstTangentVectorRef delta_o(delta_ptr);
- ConstTangentVectorRef delta_d(delta_ptr + kDim - 1);
- AmbientVectorRef o_plus_delta(x_plus_delta_ptr);
- AmbientVectorRef d_plus_delta(x_plus_delta_ptr + kDim);
- const double norm_delta_d = delta_d.norm();
- o_plus_delta = o;
- // Shortcut for zero delta direction.
- if (norm_delta_d == 0.0) {
- d_plus_delta = d;
- if (delta_o.isZero(0.0)) {
- return true;
- }
- }
- // Calculate the householder transformation which is needed for f_d and f_o.
- AmbientVector v;
- double beta;
- // NOTE: The explicit template arguments are needed here because
- // ComputeHouseholderVector is templated and some versions of MSVC
- // have trouble deducing the type of v automatically.
- internal::ComputeHouseholderVector<ConstAmbientVectorRef, double, kDim>(
- d, &v, &beta);
- if (norm_delta_d != 0.0) {
- // Map the delta from the minimum representation to the over parameterized
- // homogeneous vector. See section A6.9.2 on page 624 of Hartley & Zisserman
- // (2nd Edition) for a detailed description. Note there is a typo on Page
- // 625, line 4 so check the book errata.
- const double norm_delta_div_2 = 0.5 * norm_delta_d;
- const double sin_delta_by_delta =
- std::sin(norm_delta_div_2) / norm_delta_div_2;
- // Apply the delta update to remain on the unit sphere. See section A6.9.3
- // on page 625 of Hartley & Zisserman (2nd Edition) for a detailed
- // description.
- AmbientVector y;
- y.template head<kDim - 1>() = 0.5 * sin_delta_by_delta * delta_d;
- y[kDim - 1] = std::cos(norm_delta_div_2);
- d_plus_delta = d.norm() * (y - v * (beta * (v.transpose() * y)));
- }
- // The null space is in the direction of the line, so the tangent space is
- // perpendicular to the line direction. This is achieved by using the
- // householder matrix of the direction and allow only movements
- // perpendicular to e_n.
- //
- // The factor of 0.5 is used to be consistent with the line direction
- // update.
- AmbientVector y;
- y << 0.5 * delta_o, 0;
- o_plus_delta += y - v * (beta * (v.transpose() * y));
- return true;
- }
- template <int AmbientSpaceDimension>
- bool LineParameterization<AmbientSpaceDimension>::ComputeJacobian(
- const double* x_ptr, double* jacobian_ptr) const {
- static constexpr int kDim = AmbientSpaceDimension;
- using AmbientVector = Eigen::Matrix<double, kDim, 1>;
- using ConstAmbientVectorRef =
- Eigen::Map<const Eigen::Matrix<double, kDim, 1>>;
- using MatrixRef = Eigen::Map<
- Eigen::Matrix<double, 2 * kDim, 2 * (kDim - 1), Eigen::RowMajor>>;
- ConstAmbientVectorRef d(x_ptr + kDim);
- MatrixRef jacobian(jacobian_ptr);
- // Clear the Jacobian as only half of the matrix is not zero.
- jacobian.setZero();
- AmbientVector v;
- double beta;
- // NOTE: The explicit template arguments are needed here because
- // ComputeHouseholderVector is templated and some versions of MSVC
- // have trouble deducing the type of v automatically.
- internal::ComputeHouseholderVector<ConstAmbientVectorRef, double, kDim>(
- d, &v, &beta);
- // The Jacobian is equal to J = 0.5 * H.leftCols(kDim - 1) where H is
- // the Householder matrix (H = I - beta * v * v') for the origin point. For
- // the line direction part the Jacobian is scaled by the norm of the
- // direction.
- for (int i = 0; i < kDim - 1; ++i) {
- jacobian.block(0, i, kDim, 1) = -0.5 * beta * v(i) * v;
- jacobian.col(i)(i) += 0.5;
- }
- jacobian.template block<kDim, kDim - 1>(kDim, kDim - 1) =
- jacobian.template block<kDim, kDim - 1>(0, 0) * d.norm();
- return true;
- }
- } // namespace ceres
- #endif // CERES_PUBLIC_INTERNAL_LINE_PARAMETERIZATION_H_
|