123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: keir@google.com (Keir Mierle)
- //
- // Computation of the Jacobian matrix for vector-valued functions of multiple
- // variables, using automatic differentiation based on the implementation of
- // dual numbers in jet.h. Before reading the rest of this file, it is advisable
- // to read jet.h's header comment in detail.
- //
- // The helper wrapper AutoDifferentiate() computes the jacobian of
- // functors with templated operator() taking this form:
- //
- // struct F {
- // template<typename T>
- // bool operator()(const T *x, const T *y, ..., T *z) {
- // // Compute z[] based on x[], y[], ...
- // // return true if computation succeeded, false otherwise.
- // }
- // };
- //
- // All inputs and outputs may be vector-valued.
- //
- // To understand how jets are used to compute the jacobian, a
- // picture may help. Consider a vector-valued function, F, returning 3
- // dimensions and taking a vector-valued parameter of 4 dimensions:
- //
- // y x
- // [ * ] F [ * ]
- // [ * ] <--- [ * ]
- // [ * ] [ * ]
- // [ * ]
- //
- // Similar to the 2-parameter example for f described in jet.h, computing the
- // jacobian dy/dx is done by substituting a suitable jet object for x and all
- // intermediate steps of the computation of F. Since x is has 4 dimensions, use
- // a Jet<double, 4>.
- //
- // Before substituting a jet object for x, the dual components are set
- // appropriately for each dimension of x:
- //
- // y x
- // [ * | * * * * ] f [ * | 1 0 0 0 ] x0
- // [ * | * * * * ] <--- [ * | 0 1 0 0 ] x1
- // [ * | * * * * ] [ * | 0 0 1 0 ] x2
- // ---+--- [ * | 0 0 0 1 ] x3
- // | ^ ^ ^ ^
- // dy/dx | | | +----- infinitesimal for x3
- // | | +------- infinitesimal for x2
- // | +--------- infinitesimal for x1
- // +----------- infinitesimal for x0
- //
- // The reason to set the internal 4x4 submatrix to the identity is that we wish
- // to take the derivative of y separately with respect to each dimension of x.
- // Each column of the 4x4 identity is therefore for a single component of the
- // independent variable x.
- //
- // Then the jacobian of the mapping, dy/dx, is the 3x4 sub-matrix of the
- // extended y vector, indicated in the above diagram.
- //
- // Functors with multiple parameters
- // ---------------------------------
- // In practice, it is often convenient to use a function f of two or more
- // vector-valued parameters, for example, x[3] and z[6]. Unfortunately, the jet
- // framework is designed for a single-parameter vector-valued input. The wrapper
- // in this file addresses this issue adding support for functions with one or
- // more parameter vectors.
- //
- // To support multiple parameters, all the parameter vectors are concatenated
- // into one and treated as a single parameter vector, except that since the
- // functor expects different inputs, we need to construct the jets as if they
- // were part of a single parameter vector. The extended jets are passed
- // separately for each parameter.
- //
- // For example, consider a functor F taking two vector parameters, p[2] and
- // q[3], and producing an output y[4]:
- //
- // struct F {
- // template<typename T>
- // bool operator()(const T *p, const T *q, T *z) {
- // // ...
- // }
- // };
- //
- // In this case, the necessary jet type is Jet<double, 5>. Here is a
- // visualization of the jet objects in this case:
- //
- // Dual components for p ----+
- // |
- // -+-
- // y [ * | 1 0 | 0 0 0 ] --- p[0]
- // [ * | 0 1 | 0 0 0 ] --- p[1]
- // [ * | . . | + + + ] |
- // [ * | . . | + + + ] v
- // [ * | . . | + + + ] <--- F(p, q)
- // [ * | . . | + + + ] ^
- // ^^^ ^^^^^ |
- // dy/dp dy/dq [ * | 0 0 | 1 0 0 ] --- q[0]
- // [ * | 0 0 | 0 1 0 ] --- q[1]
- // [ * | 0 0 | 0 0 1 ] --- q[2]
- // --+--
- // |
- // Dual components for q --------------+
- //
- // where the 4x2 submatrix (marked with ".") and 4x3 submatrix (marked with "+"
- // of y in the above diagram are the derivatives of y with respect to p and q
- // respectively. This is how autodiff works for functors taking multiple vector
- // valued arguments (up to 6).
- //
- // Jacobian null pointers (nullptr)
- // --------------------------------
- // In general, the functions below will accept nullptr for all or some of the
- // Jacobian parameters, meaning that those Jacobians will not be computed.
- #ifndef CERES_PUBLIC_INTERNAL_AUTODIFF_H_
- #define CERES_PUBLIC_INTERNAL_AUTODIFF_H_
- #include <array>
- #include <cstddef>
- #include <utility>
- #include "ceres/internal/array_selector.h"
- #include "ceres/internal/eigen.h"
- #include "ceres/internal/fixed_array.h"
- #include "ceres/internal/parameter_dims.h"
- #include "ceres/internal/variadic_evaluate.h"
- #include "ceres/jet.h"
- #include "ceres/types.h"
- #include "glog/logging.h"
- // If the number of parameters exceeds this values, the corresponding jets are
- // placed on the heap. This will reduce performance by a factor of 2-5 on
- // current compilers.
- #ifndef CERES_AUTODIFF_MAX_PARAMETERS_ON_STACK
- #define CERES_AUTODIFF_MAX_PARAMETERS_ON_STACK 50
- #endif
- #ifndef CERES_AUTODIFF_MAX_RESIDUALS_ON_STACK
- #define CERES_AUTODIFF_MAX_RESIDUALS_ON_STACK 20
- #endif
- namespace ceres::internal {
- // Extends src by a 1st order perturbation for every dimension and puts it in
- // dst. The size of src is N. Since this is also used for perturbations in
- // blocked arrays, offset is used to shift which part of the jet the
- // perturbation occurs. This is used to set up the extended x augmented by an
- // identity matrix. The JetT type should be a Jet type, and T should be a
- // numeric type (e.g. double). For example,
- //
- // 0 1 2 3 4 5 6 7 8
- // dst[0] [ * | . . | 1 0 0 | . . . ]
- // dst[1] [ * | . . | 0 1 0 | . . . ]
- // dst[2] [ * | . . | 0 0 1 | . . . ]
- //
- // is what would get put in dst if N was 3, offset was 3, and the jet type JetT
- // was 8-dimensional.
- template <int j, int N, int Offset, typename T, typename JetT>
- struct Make1stOrderPerturbation {
- public:
- inline static void Apply(const T* src, JetT* dst) {
- if (j == 0) {
- DCHECK(src);
- DCHECK(dst);
- }
- dst[j] = JetT(src[j], j + Offset);
- Make1stOrderPerturbation<j + 1, N, Offset, T, JetT>::Apply(src, dst);
- }
- };
- template <int N, int Offset, typename T, typename JetT>
- struct Make1stOrderPerturbation<N, N, Offset, T, JetT> {
- public:
- static void Apply(const T* /* NOT USED */, JetT* /* NOT USED */) {}
- };
- // Calls Make1stOrderPerturbation for every parameter block.
- //
- // Example:
- // If one having three parameter blocks with dimensions (3, 2, 4), the call
- // Make1stOrderPerturbations<integer_sequence<3, 2, 4>::Apply(params, x);
- // will result in the following calls to Make1stOrderPerturbation:
- // Make1stOrderPerturbation<0, 3, 0>::Apply(params[0], x + 0);
- // Make1stOrderPerturbation<0, 2, 3>::Apply(params[1], x + 3);
- // Make1stOrderPerturbation<0, 4, 5>::Apply(params[2], x + 5);
- template <typename Seq, int ParameterIdx = 0, int Offset = 0>
- struct Make1stOrderPerturbations;
- template <int N, int... Ns, int ParameterIdx, int Offset>
- struct Make1stOrderPerturbations<std::integer_sequence<int, N, Ns...>,
- ParameterIdx,
- Offset> {
- template <typename T, typename JetT>
- inline static void Apply(T const* const* parameters, JetT* x) {
- Make1stOrderPerturbation<0, N, Offset, T, JetT>::Apply(
- parameters[ParameterIdx], x + Offset);
- Make1stOrderPerturbations<std::integer_sequence<int, Ns...>,
- ParameterIdx + 1,
- Offset + N>::Apply(parameters, x);
- }
- };
- // End of 'recursion'. Nothing more to do.
- template <int ParameterIdx, int Total>
- struct Make1stOrderPerturbations<std::integer_sequence<int>,
- ParameterIdx,
- Total> {
- template <typename T, typename JetT>
- static void Apply(T const* const* /* NOT USED */, JetT* /* NOT USED */) {}
- };
- // Takes the 0th order part of src, assumed to be a Jet type, and puts it in
- // dst. This is used to pick out the "vector" part of the extended y.
- template <typename JetT, typename T>
- inline void Take0thOrderPart(int M, const JetT* src, T dst) {
- DCHECK(src);
- for (int i = 0; i < M; ++i) {
- dst[i] = src[i].a;
- }
- }
- // Takes N 1st order parts, starting at index N0, and puts them in the M x N
- // matrix 'dst'. This is used to pick out the "matrix" parts of the extended y.
- template <int N0, int N, typename JetT, typename T>
- inline void Take1stOrderPart(const int M, const JetT* src, T* dst) {
- DCHECK(src);
- DCHECK(dst);
- for (int i = 0; i < M; ++i) {
- Eigen::Map<Eigen::Matrix<T, N, 1>>(dst + N * i, N) =
- src[i].v.template segment<N>(N0);
- }
- }
- // Calls Take1stOrderPart for every parameter block.
- //
- // Example:
- // If one having three parameter blocks with dimensions (3, 2, 4), the call
- // Take1stOrderParts<integer_sequence<3, 2, 4>::Apply(num_outputs,
- // output,
- // jacobians);
- // will result in the following calls to Take1stOrderPart:
- // if (jacobians[0]) {
- // Take1stOrderPart<0, 3>(num_outputs, output, jacobians[0]);
- // }
- // if (jacobians[1]) {
- // Take1stOrderPart<3, 2>(num_outputs, output, jacobians[1]);
- // }
- // if (jacobians[2]) {
- // Take1stOrderPart<5, 4>(num_outputs, output, jacobians[2]);
- // }
- template <typename Seq, int ParameterIdx = 0, int Offset = 0>
- struct Take1stOrderParts;
- template <int N, int... Ns, int ParameterIdx, int Offset>
- struct Take1stOrderParts<std::integer_sequence<int, N, Ns...>,
- ParameterIdx,
- Offset> {
- template <typename JetT, typename T>
- inline static void Apply(int num_outputs, JetT* output, T** jacobians) {
- if (jacobians[ParameterIdx]) {
- Take1stOrderPart<Offset, N>(num_outputs, output, jacobians[ParameterIdx]);
- }
- Take1stOrderParts<std::integer_sequence<int, Ns...>,
- ParameterIdx + 1,
- Offset + N>::Apply(num_outputs, output, jacobians);
- }
- };
- // End of 'recursion'. Nothing more to do.
- template <int ParameterIdx, int Offset>
- struct Take1stOrderParts<std::integer_sequence<int>, ParameterIdx, Offset> {
- template <typename T, typename JetT>
- static void Apply(int /* NOT USED*/,
- JetT* /* NOT USED*/,
- T** /* NOT USED */) {}
- };
- template <int kNumResiduals,
- typename ParameterDims,
- typename Functor,
- typename T>
- inline bool AutoDifferentiate(const Functor& functor,
- T const* const* parameters,
- int dynamic_num_outputs,
- T* function_value,
- T** jacobians) {
- using JetT = Jet<T, ParameterDims::kNumParameters>;
- using Parameters = typename ParameterDims::Parameters;
- if (kNumResiduals != DYNAMIC) {
- DCHECK_EQ(kNumResiduals, dynamic_num_outputs);
- }
- ArraySelector<JetT,
- ParameterDims::kNumParameters,
- CERES_AUTODIFF_MAX_PARAMETERS_ON_STACK>
- parameters_as_jets(ParameterDims::kNumParameters);
- // Pointers to the beginning of each parameter block
- std::array<JetT*, ParameterDims::kNumParameterBlocks> unpacked_parameters =
- ParameterDims::GetUnpackedParameters(parameters_as_jets.data());
- // If the number of residuals is fixed, we use the template argument as the
- // number of outputs. Otherwise we use the num_outputs parameter. Note: The
- // ?-operator here is compile-time evaluated, therefore num_outputs is also
- // a compile-time constant for functors with fixed residuals.
- const int num_outputs =
- kNumResiduals == DYNAMIC ? dynamic_num_outputs : kNumResiduals;
- DCHECK_GT(num_outputs, 0);
- ArraySelector<JetT, kNumResiduals, CERES_AUTODIFF_MAX_RESIDUALS_ON_STACK>
- residuals_as_jets(num_outputs);
- // Invalidate the output Jets, so that we can detect if the user
- // did not assign values to all of them.
- for (int i = 0; i < num_outputs; ++i) {
- residuals_as_jets[i].a = kImpossibleValue;
- residuals_as_jets[i].v.setConstant(kImpossibleValue);
- }
- Make1stOrderPerturbations<Parameters>::Apply(parameters,
- parameters_as_jets.data());
- if (!VariadicEvaluate<ParameterDims>(
- functor, unpacked_parameters.data(), residuals_as_jets.data())) {
- return false;
- }
- Take0thOrderPart(num_outputs, residuals_as_jets.data(), function_value);
- Take1stOrderParts<Parameters>::Apply(
- num_outputs, residuals_as_jets.data(), jacobians);
- return true;
- }
- } // namespace ceres::internal
- #endif // CERES_PUBLIC_INTERNAL_AUTODIFF_H_
|