123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #ifndef CERES_PUBLIC_CUBIC_INTERPOLATION_H_
- #define CERES_PUBLIC_CUBIC_INTERPOLATION_H_
- #include "Eigen/Core"
- #include "ceres/internal/export.h"
- #include "glog/logging.h"
- namespace ceres {
- // Given samples from a function sampled at four equally spaced points,
- //
- // p0 = f(-1)
- // p1 = f(0)
- // p2 = f(1)
- // p3 = f(2)
- //
- // Evaluate the cubic Hermite spline (also known as the Catmull-Rom
- // spline) at a point x that lies in the interval [0, 1].
- //
- // This is also the interpolation kernel (for the case of a = 0.5) as
- // proposed by R. Keys, in:
- //
- // "Cubic convolution interpolation for digital image processing".
- // IEEE Transactions on Acoustics, Speech, and Signal Processing
- // 29 (6): 1153-1160.
- //
- // For more details see
- //
- // http://en.wikipedia.org/wiki/Cubic_Hermite_spline
- // http://en.wikipedia.org/wiki/Bicubic_interpolation
- //
- // f if not nullptr will contain the interpolated function values.
- // dfdx if not nullptr will contain the interpolated derivative values.
- template <int kDataDimension>
- void CubicHermiteSpline(const Eigen::Matrix<double, kDataDimension, 1>& p0,
- const Eigen::Matrix<double, kDataDimension, 1>& p1,
- const Eigen::Matrix<double, kDataDimension, 1>& p2,
- const Eigen::Matrix<double, kDataDimension, 1>& p3,
- const double x,
- double* f,
- double* dfdx) {
- using VType = Eigen::Matrix<double, kDataDimension, 1>;
- const VType a = 0.5 * (-p0 + 3.0 * p1 - 3.0 * p2 + p3);
- const VType b = 0.5 * (2.0 * p0 - 5.0 * p1 + 4.0 * p2 - p3);
- const VType c = 0.5 * (-p0 + p2);
- const VType d = p1;
- // Use Horner's rule to evaluate the function value and its
- // derivative.
- // f = ax^3 + bx^2 + cx + d
- if (f != nullptr) {
- Eigen::Map<VType>(f, kDataDimension) = d + x * (c + x * (b + x * a));
- }
- // dfdx = 3ax^2 + 2bx + c
- if (dfdx != nullptr) {
- Eigen::Map<VType>(dfdx, kDataDimension) = c + x * (2.0 * b + 3.0 * a * x);
- }
- }
- // Given as input an infinite one dimensional grid, which provides the
- // following interface.
- //
- // class Grid {
- // public:
- // enum { DATA_DIMENSION = 2; };
- // void GetValue(int n, double* f) const;
- // };
- //
- // Here, GetValue gives the value of a function f (possibly vector
- // valued) for any integer n.
- //
- // The enum DATA_DIMENSION indicates the dimensionality of the
- // function being interpolated. For example if you are interpolating
- // rotations in axis-angle format over time, then DATA_DIMENSION = 3.
- //
- // CubicInterpolator uses cubic Hermite splines to produce a smooth
- // approximation to it that can be used to evaluate the f(x) and f'(x)
- // at any point on the real number line.
- //
- // For more details on cubic interpolation see
- //
- // http://en.wikipedia.org/wiki/Cubic_Hermite_spline
- //
- // Example usage:
- //
- // const double data[] = {1.0, 2.0, 5.0, 6.0};
- // Grid1D<double, 1> grid(data, 0, 4);
- // CubicInterpolator<Grid1D<double, 1>> interpolator(grid);
- // double f, dfdx;
- // interpolator.Evaluator(1.5, &f, &dfdx);
- template <typename Grid>
- class CubicInterpolator {
- public:
- explicit CubicInterpolator(const Grid& grid) : grid_(grid) {
- // The + casts the enum into an int before doing the
- // comparison. It is needed to prevent
- // "-Wunnamed-type-template-args" related errors.
- CHECK_GE(+Grid::DATA_DIMENSION, 1);
- }
- void Evaluate(double x, double* f, double* dfdx) const {
- const int n = std::floor(x);
- Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> p0, p1, p2, p3;
- grid_.GetValue(n - 1, p0.data());
- grid_.GetValue(n, p1.data());
- grid_.GetValue(n + 1, p2.data());
- grid_.GetValue(n + 2, p3.data());
- CubicHermiteSpline<Grid::DATA_DIMENSION>(p0, p1, p2, p3, x - n, f, dfdx);
- }
- // The following two Evaluate overloads are needed for interfacing
- // with automatic differentiation. The first is for when a scalar
- // evaluation is done, and the second one is for when Jets are used.
- void Evaluate(const double& x, double* f) const { Evaluate(x, f, nullptr); }
- template <typename JetT>
- void Evaluate(const JetT& x, JetT* f) const {
- double fx[Grid::DATA_DIMENSION], dfdx[Grid::DATA_DIMENSION];
- Evaluate(x.a, fx, dfdx);
- for (int i = 0; i < Grid::DATA_DIMENSION; ++i) {
- f[i].a = fx[i];
- f[i].v = dfdx[i] * x.v;
- }
- }
- private:
- const Grid& grid_;
- };
- // An object that implements an infinite one dimensional grid needed
- // by the CubicInterpolator where the source of the function values is
- // an array of type T on the interval
- //
- // [begin, ..., end - 1]
- //
- // Since the input array is finite and the grid is infinite, values
- // outside this interval needs to be computed. Grid1D uses the value
- // from the nearest edge.
- //
- // The function being provided can be vector valued, in which case
- // kDataDimension > 1. The dimensional slices of the function maybe
- // interleaved, or they maybe stacked, i.e, if the function has
- // kDataDimension = 2, if kInterleaved = true, then it is stored as
- //
- // f01, f02, f11, f12 ....
- //
- // and if kInterleaved = false, then it is stored as
- //
- // f01, f11, .. fn1, f02, f12, .. , fn2
- //
- template <typename T, int kDataDimension = 1, bool kInterleaved = true>
- struct Grid1D {
- public:
- enum { DATA_DIMENSION = kDataDimension };
- Grid1D(const T* data, const int begin, const int end)
- : data_(data), begin_(begin), end_(end), num_values_(end - begin) {
- CHECK_LT(begin, end);
- }
- EIGEN_STRONG_INLINE void GetValue(const int n, double* f) const {
- const int idx = (std::min)((std::max)(begin_, n), end_ - 1) - begin_;
- if (kInterleaved) {
- for (int i = 0; i < kDataDimension; ++i) {
- f[i] = static_cast<double>(data_[kDataDimension * idx + i]);
- }
- } else {
- for (int i = 0; i < kDataDimension; ++i) {
- f[i] = static_cast<double>(data_[i * num_values_ + idx]);
- }
- }
- }
- private:
- const T* data_;
- const int begin_;
- const int end_;
- const int num_values_;
- };
- // Given as input an infinite two dimensional grid like object, which
- // provides the following interface:
- //
- // struct Grid {
- // enum { DATA_DIMENSION = 1 };
- // void GetValue(int row, int col, double* f) const;
- // };
- //
- // Where, GetValue gives us the value of a function f (possibly vector
- // valued) for any pairs of integers (row, col), and the enum
- // DATA_DIMENSION indicates the dimensionality of the function being
- // interpolated. For example if you are interpolating a color image
- // with three channels (Red, Green & Blue), then DATA_DIMENSION = 3.
- //
- // BiCubicInterpolator uses the cubic convolution interpolation
- // algorithm of R. Keys, to produce a smooth approximation to it that
- // can be used to evaluate the f(r,c), df(r, c)/dr and df(r,c)/dc at
- // any point in the real plane.
- //
- // For more details on the algorithm used here see:
- //
- // "Cubic convolution interpolation for digital image processing".
- // Robert G. Keys, IEEE Trans. on Acoustics, Speech, and Signal
- // Processing 29 (6): 1153-1160, 1981.
- //
- // http://en.wikipedia.org/wiki/Cubic_Hermite_spline
- // http://en.wikipedia.org/wiki/Bicubic_interpolation
- //
- // Example usage:
- //
- // const double data[] = {1.0, 3.0, -1.0, 4.0,
- // 3.6, 2.1, 4.2, 2.0,
- // 2.0, 1.0, 3.1, 5.2};
- // Grid2D<double, 1> grid(data, 3, 4);
- // BiCubicInterpolator<Grid2D<double, 1>> interpolator(grid);
- // double f, dfdr, dfdc;
- // interpolator.Evaluate(1.2, 2.5, &f, &dfdr, &dfdc);
- template <typename Grid>
- class BiCubicInterpolator {
- public:
- explicit BiCubicInterpolator(const Grid& grid) : grid_(grid) {
- // The + casts the enum into an int before doing the
- // comparison. It is needed to prevent
- // "-Wunnamed-type-template-args" related errors.
- CHECK_GE(+Grid::DATA_DIMENSION, 1);
- }
- // Evaluate the interpolated function value and/or its
- // derivative. Uses the nearest point on the grid boundary if r or
- // c is out of bounds.
- void Evaluate(
- double r, double c, double* f, double* dfdr, double* dfdc) const {
- // BiCubic interpolation requires 16 values around the point being
- // evaluated. We will use pij, to indicate the elements of the
- // 4x4 grid of values.
- //
- // col
- // p00 p01 p02 p03
- // row p10 p11 p12 p13
- // p20 p21 p22 p23
- // p30 p31 p32 p33
- //
- // The point (r,c) being evaluated is assumed to lie in the square
- // defined by p11, p12, p22 and p21.
- const int row = std::floor(r);
- const int col = std::floor(c);
- Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> p0, p1, p2, p3;
- // Interpolate along each of the four rows, evaluating the function
- // value and the horizontal derivative in each row.
- Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> f0, f1, f2, f3;
- Eigen::Matrix<double, Grid::DATA_DIMENSION, 1> df0dc, df1dc, df2dc, df3dc;
- grid_.GetValue(row - 1, col - 1, p0.data());
- grid_.GetValue(row - 1, col, p1.data());
- grid_.GetValue(row - 1, col + 1, p2.data());
- grid_.GetValue(row - 1, col + 2, p3.data());
- CubicHermiteSpline<Grid::DATA_DIMENSION>(
- p0, p1, p2, p3, c - col, f0.data(), df0dc.data());
- grid_.GetValue(row, col - 1, p0.data());
- grid_.GetValue(row, col, p1.data());
- grid_.GetValue(row, col + 1, p2.data());
- grid_.GetValue(row, col + 2, p3.data());
- CubicHermiteSpline<Grid::DATA_DIMENSION>(
- p0, p1, p2, p3, c - col, f1.data(), df1dc.data());
- grid_.GetValue(row + 1, col - 1, p0.data());
- grid_.GetValue(row + 1, col, p1.data());
- grid_.GetValue(row + 1, col + 1, p2.data());
- grid_.GetValue(row + 1, col + 2, p3.data());
- CubicHermiteSpline<Grid::DATA_DIMENSION>(
- p0, p1, p2, p3, c - col, f2.data(), df2dc.data());
- grid_.GetValue(row + 2, col - 1, p0.data());
- grid_.GetValue(row + 2, col, p1.data());
- grid_.GetValue(row + 2, col + 1, p2.data());
- grid_.GetValue(row + 2, col + 2, p3.data());
- CubicHermiteSpline<Grid::DATA_DIMENSION>(
- p0, p1, p2, p3, c - col, f3.data(), df3dc.data());
- // Interpolate vertically the interpolated value from each row and
- // compute the derivative along the columns.
- CubicHermiteSpline<Grid::DATA_DIMENSION>(f0, f1, f2, f3, r - row, f, dfdr);
- if (dfdc != nullptr) {
- // Interpolate vertically the derivative along the columns.
- CubicHermiteSpline<Grid::DATA_DIMENSION>(
- df0dc, df1dc, df2dc, df3dc, r - row, dfdc, nullptr);
- }
- }
- // The following two Evaluate overloads are needed for interfacing
- // with automatic differentiation. The first is for when a scalar
- // evaluation is done, and the second one is for when Jets are used.
- void Evaluate(const double& r, const double& c, double* f) const {
- Evaluate(r, c, f, nullptr, nullptr);
- }
- template <typename JetT>
- void Evaluate(const JetT& r, const JetT& c, JetT* f) const {
- double frc[Grid::DATA_DIMENSION];
- double dfdr[Grid::DATA_DIMENSION];
- double dfdc[Grid::DATA_DIMENSION];
- Evaluate(r.a, c.a, frc, dfdr, dfdc);
- for (int i = 0; i < Grid::DATA_DIMENSION; ++i) {
- f[i].a = frc[i];
- f[i].v = dfdr[i] * r.v + dfdc[i] * c.v;
- }
- }
- private:
- const Grid& grid_;
- };
- // An object that implements an infinite two dimensional grid needed
- // by the BiCubicInterpolator where the source of the function values
- // is an grid of type T on the grid
- //
- // [(row_start, col_start), ..., (row_start, col_end - 1)]
- // [ ... ]
- // [(row_end - 1, col_start), ..., (row_end - 1, col_end - 1)]
- //
- // Since the input grid is finite and the grid is infinite, values
- // outside this interval needs to be computed. Grid2D uses the value
- // from the nearest edge.
- //
- // The function being provided can be vector valued, in which case
- // kDataDimension > 1. The data maybe stored in row or column major
- // format and the various dimensional slices of the function maybe
- // interleaved, or they maybe stacked, i.e, if the function has
- // kDataDimension = 2, is stored in row-major format and if
- // kInterleaved = true, then it is stored as
- //
- // f001, f002, f011, f012, ...
- //
- // A commonly occurring example are color images (RGB) where the three
- // channels are stored interleaved.
- //
- // If kInterleaved = false, then it is stored as
- //
- // f001, f011, ..., fnm1, f002, f012, ...
- template <typename T,
- int kDataDimension = 1,
- bool kRowMajor = true,
- bool kInterleaved = true>
- struct Grid2D {
- public:
- enum { DATA_DIMENSION = kDataDimension };
- Grid2D(const T* data,
- const int row_begin,
- const int row_end,
- const int col_begin,
- const int col_end)
- : data_(data),
- row_begin_(row_begin),
- row_end_(row_end),
- col_begin_(col_begin),
- col_end_(col_end),
- num_rows_(row_end - row_begin),
- num_cols_(col_end - col_begin),
- num_values_(num_rows_ * num_cols_) {
- CHECK_GE(kDataDimension, 1);
- CHECK_LT(row_begin, row_end);
- CHECK_LT(col_begin, col_end);
- }
- EIGEN_STRONG_INLINE void GetValue(const int r, const int c, double* f) const {
- const int row_idx =
- (std::min)((std::max)(row_begin_, r), row_end_ - 1) - row_begin_;
- const int col_idx =
- (std::min)((std::max)(col_begin_, c), col_end_ - 1) - col_begin_;
- const int n = (kRowMajor) ? num_cols_ * row_idx + col_idx
- : num_rows_ * col_idx + row_idx;
- if (kInterleaved) {
- for (int i = 0; i < kDataDimension; ++i) {
- f[i] = static_cast<double>(data_[kDataDimension * n + i]);
- }
- } else {
- for (int i = 0; i < kDataDimension; ++i) {
- f[i] = static_cast<double>(data_[i * num_values_ + n]);
- }
- }
- }
- private:
- const T* data_;
- const int row_begin_;
- const int row_end_;
- const int col_begin_;
- const int col_end_;
- const int num_rows_;
- const int num_cols_;
- const int num_values_;
- };
- } // namespace ceres
- #endif // CERES_PUBLIC_CUBIC_INTERPOLATOR_H_
|