123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- #ifndef CERES_PUBLIC_AUTODIFF_MANIFOLD_H_
- #define CERES_PUBLIC_AUTODIFF_MANIFOLD_H_
- #include <memory>
- #include "ceres/internal/autodiff.h"
- #include "ceres/manifold.h"
- namespace ceres {
- // Create a Manifold with Jacobians computed via automatic differentiation. For
- // more information on manifolds, see include/ceres/manifold.h
- //
- // To get an auto differentiated manifold, you must define a class/struct with
- // templated Plus and Minus functions that compute
- //
- // x_plus_delta = Plus(x, delta);
- // y_minus_x = Minus(y, x);
- //
- // Where, x, y and x_plus_y are vectors on the manifold in the ambient space (so
- // they are kAmbientSize vectors) and delta, y_minus_x are vectors in the
- // tangent space (so they are kTangentSize vectors).
- //
- // The Functor should have the signature:
- //
- // struct Functor {
- // template <typename T>
- // bool Plus(const T* x, const T* delta, T* x_plus_delta) const;
- //
- // template <typename T>
- // bool Minus(const T* y, const T* x, T* y_minus_x) const;
- // };
- //
- // Observe that the Plus and Minus operations are templated on the parameter T.
- // The autodiff framework substitutes appropriate "Jet" objects for T in order
- // to compute the derivative when necessary. This is the same mechanism that is
- // used to compute derivatives when using AutoDiffCostFunction.
- //
- // Plus and Minus should return true if the computation is successful and false
- // otherwise, in which case the result will not be used.
- //
- // Given this Functor, the corresponding Manifold can be constructed as:
- //
- // AutoDiffManifold<Functor, kAmbientSize, kTangentSize> manifold;
- //
- // As a concrete example consider the case of Quaternions. Quaternions form a
- // three dimensional manifold embedded in R^4, i.e. they have an ambient
- // dimension of 4 and their tangent space has dimension 3. The following Functor
- // (taken from autodiff_manifold_test.cc) defines the Plus and Minus operations
- // on the Quaternion manifold:
- //
- // NOTE: The following is only used for illustration purposes. Ceres Solver
- // ships with optimized production grade QuaternionManifold implementation. See
- // manifold.h.
- //
- // This functor assumes that the quaternions are laid out as [w,x,y,z] in
- // memory, i.e. the real or scalar part is the first coordinate.
- //
- // struct QuaternionFunctor {
- // template <typename T>
- // bool Plus(const T* x, const T* delta, T* x_plus_delta) const {
- // const T squared_norm_delta =
- // delta[0] * delta[0] + delta[1] * delta[1] + delta[2] * delta[2];
- //
- // T q_delta[4];
- // if (squared_norm_delta > T(0.0)) {
- // T norm_delta = sqrt(squared_norm_delta);
- // const T sin_delta_by_delta = sin(norm_delta) / norm_delta;
- // q_delta[0] = cos(norm_delta);
- // q_delta[1] = sin_delta_by_delta * delta[0];
- // q_delta[2] = sin_delta_by_delta * delta[1];
- // q_delta[3] = sin_delta_by_delta * delta[2];
- // } else {
- // // We do not just use q_delta = [1,0,0,0] here because that is a
- // // constant and when used for automatic differentiation will
- // // lead to a zero derivative. Instead we take a first order
- // // approximation and evaluate it at zero.
- // q_delta[0] = T(1.0);
- // q_delta[1] = delta[0];
- // q_delta[2] = delta[1];
- // q_delta[3] = delta[2];
- // }
- //
- // QuaternionProduct(q_delta, x, x_plus_delta);
- // return true;
- // }
- //
- // template <typename T>
- // bool Minus(const T* y, const T* x, T* y_minus_x) const {
- // T minus_x[4] = {x[0], -x[1], -x[2], -x[3]};
- // T ambient_y_minus_x[4];
- // QuaternionProduct(y, minus_x, ambient_y_minus_x);
- // T u_norm = sqrt(ambient_y_minus_x[1] * ambient_y_minus_x[1] +
- // ambient_y_minus_x[2] * ambient_y_minus_x[2] +
- // ambient_y_minus_x[3] * ambient_y_minus_x[3]);
- // if (u_norm > 0.0) {
- // T theta = atan2(u_norm, ambient_y_minus_x[0]);
- // y_minus_x[0] = theta * ambient_y_minus_x[1] / u_norm;
- // y_minus_x[1] = theta * ambient_y_minus_x[2] / u_norm;
- // y_minus_x[2] = theta * ambient_y_minus_x[3] / u_norm;
- // } else {
- // // We do not use [0,0,0] here because even though the value part is
- // // a constant, the derivative part is not.
- // y_minus_x[0] = ambient_y_minus_x[1];
- // y_minus_x[1] = ambient_y_minus_x[2];
- // y_minus_x[2] = ambient_y_minus_x[3];
- // }
- // return true;
- // }
- // };
- //
- // Then given this struct, the auto differentiated Quaternion Manifold can now
- // be constructed as
- //
- // Manifold* manifold = new AutoDiffManifold<QuaternionFunctor, 4, 3>;
- template <typename Functor, int kAmbientSize, int kTangentSize>
- class AutoDiffManifold final : public Manifold {
- public:
- AutoDiffManifold() : functor_(std::make_unique<Functor>()) {}
- // Takes ownership of functor.
- explicit AutoDiffManifold(Functor* functor) : functor_(functor) {}
- int AmbientSize() const override { return kAmbientSize; }
- int TangentSize() const override { return kTangentSize; }
- bool Plus(const double* x,
- const double* delta,
- double* x_plus_delta) const override {
- return functor_->Plus(x, delta, x_plus_delta);
- }
- bool PlusJacobian(const double* x, double* jacobian) const override;
- bool Minus(const double* y,
- const double* x,
- double* y_minus_x) const override {
- return functor_->Minus(y, x, y_minus_x);
- }
- bool MinusJacobian(const double* x, double* jacobian) const override;
- const Functor& functor() const { return *functor_; }
- private:
- std::unique_ptr<Functor> functor_;
- };
- namespace internal {
- // The following two helper structs are needed to interface the Plus and Minus
- // methods of the ManifoldFunctor with the automatic differentiation which
- // expects a Functor with operator().
- template <typename Functor>
- struct PlusWrapper {
- explicit PlusWrapper(const Functor& functor) : functor(functor) {}
- template <typename T>
- bool operator()(const T* x, const T* delta, T* x_plus_delta) const {
- return functor.Plus(x, delta, x_plus_delta);
- }
- const Functor& functor;
- };
- template <typename Functor>
- struct MinusWrapper {
- explicit MinusWrapper(const Functor& functor) : functor(functor) {}
- template <typename T>
- bool operator()(const T* y, const T* x, T* y_minus_x) const {
- return functor.Minus(y, x, y_minus_x);
- }
- const Functor& functor;
- };
- } // namespace internal
- template <typename Functor, int kAmbientSize, int kTangentSize>
- bool AutoDiffManifold<Functor, kAmbientSize, kTangentSize>::PlusJacobian(
- const double* x, double* jacobian) const {
- double zero_delta[kTangentSize];
- for (int i = 0; i < kTangentSize; ++i) {
- zero_delta[i] = 0.0;
- }
- double x_plus_delta[kAmbientSize];
- for (int i = 0; i < kAmbientSize; ++i) {
- x_plus_delta[i] = 0.0;
- }
- const double* parameter_ptrs[2] = {x, zero_delta};
- // PlusJacobian is D_2 Plus(x,0) so we only need to compute the Jacobian
- // w.r.t. the second argument.
- double* jacobian_ptrs[2] = {nullptr, jacobian};
- return internal::AutoDifferentiate<
- kAmbientSize,
- internal::StaticParameterDims<kAmbientSize, kTangentSize>>(
- internal::PlusWrapper<Functor>(*functor_),
- parameter_ptrs,
- kAmbientSize,
- x_plus_delta,
- jacobian_ptrs);
- }
- template <typename Functor, int kAmbientSize, int kTangentSize>
- bool AutoDiffManifold<Functor, kAmbientSize, kTangentSize>::MinusJacobian(
- const double* x, double* jacobian) const {
- double y_minus_x[kTangentSize];
- for (int i = 0; i < kTangentSize; ++i) {
- y_minus_x[i] = 0.0;
- }
- const double* parameter_ptrs[2] = {x, x};
- // MinusJacobian is D_1 Minus(x,x), so we only need to compute the Jacobian
- // w.r.t. the first argument.
- double* jacobian_ptrs[2] = {jacobian, nullptr};
- return internal::AutoDifferentiate<
- kTangentSize,
- internal::StaticParameterDims<kAmbientSize, kAmbientSize>>(
- internal::MinusWrapper<Functor>(*functor_),
- parameter_ptrs,
- kTangentSize,
- y_minus_x,
- jacobian_ptrs);
- }
- } // namespace ceres
- #endif // CERES_PUBLIC_AUTODIFF_MANIFOLD_H_
|