rosenbrock_analytic_diff.cc 3.0 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. // Ceres Solver - A fast non-linear least squares minimizer
  2. // Copyright 2023 Google Inc. All rights reserved.
  3. // http://ceres-solver.org/
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are met:
  7. //
  8. // * Redistributions of source code must retain the above copyright notice,
  9. // this list of conditions and the following disclaimer.
  10. // * Redistributions in binary form must reproduce the above copyright notice,
  11. // this list of conditions and the following disclaimer in the documentation
  12. // and/or other materials provided with the distribution.
  13. // * Neither the name of Google Inc. nor the names of its contributors may be
  14. // used to endorse or promote products derived from this software without
  15. // specific prior written permission.
  16. //
  17. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  18. // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  19. // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  20. // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  21. // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  22. // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  23. // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  24. // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  25. // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  26. // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  27. // POSSIBILITY OF SUCH DAMAGE.
  28. //
  29. // Author: sameeragarwal@google.com (Sameer Agarwal)
  30. //
  31. // Example of minimizing the Rosenbrock function
  32. // (https://en.wikipedia.org/wiki/Rosenbrock_function) using
  33. // GradientProblemSolver using analytic derivatives.
  34. #include "ceres/ceres.h"
  35. #include "glog/logging.h"
  36. // f(x,y) = (1-x)^2 + 100(y - x^2)^2;
  37. class Rosenbrock final : public ceres::FirstOrderFunction {
  38. public:
  39. bool Evaluate(const double* parameters,
  40. double* cost,
  41. double* gradient) const override {
  42. const double x = parameters[0];
  43. const double y = parameters[1];
  44. cost[0] = (1.0 - x) * (1.0 - x) + 100.0 * (y - x * x) * (y - x * x);
  45. if (gradient) {
  46. gradient[0] = -2.0 * (1.0 - x) - 200.0 * (y - x * x) * 2.0 * x;
  47. gradient[1] = 200.0 * (y - x * x);
  48. }
  49. return true;
  50. }
  51. int NumParameters() const override { return 2; }
  52. };
  53. int main(int argc, char** argv) {
  54. google::InitGoogleLogging(argv[0]);
  55. double parameters[2] = {-1.2, 1.0};
  56. ceres::GradientProblemSolver::Options options;
  57. options.minimizer_progress_to_stdout = true;
  58. ceres::GradientProblemSolver::Summary summary;
  59. ceres::GradientProblem problem(new Rosenbrock());
  60. ceres::Solve(options, problem, parameters, &summary);
  61. std::cout << summary.FullReport() << "\n";
  62. std::cout << "Initial x: " << -1.2 << " y: " << 1.0 << "\n";
  63. std::cout << "Final x: " << parameters[0] << " y: " << parameters[1]
  64. << "\n";
  65. return 0;
  66. }