robot_pose_mle.cc 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330
  1. // Ceres Solver - A fast non-linear least squares minimizer
  2. // Copyright 2023 Google Inc. All rights reserved.
  3. // http://ceres-solver.org/
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are met:
  7. //
  8. // * Redistributions of source code must retain the above copyright notice,
  9. // this list of conditions and the following disclaimer.
  10. // * Redistributions in binary form must reproduce the above copyright notice,
  11. // this list of conditions and the following disclaimer in the documentation
  12. // and/or other materials provided with the distribution.
  13. // * Neither the name of Google Inc. nor the names of its contributors may be
  14. // used to endorse or promote products derived from this software without
  15. // specific prior written permission.
  16. //
  17. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  18. // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  19. // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  20. // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  21. // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  22. // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  23. // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  24. // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  25. // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  26. // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  27. // POSSIBILITY OF SUCH DAMAGE.
  28. //
  29. // Author: joydeepb@ri.cmu.edu (Joydeep Biswas)
  30. //
  31. // This example demonstrates how to use the DynamicAutoDiffCostFunction
  32. // variant of CostFunction. The DynamicAutoDiffCostFunction is meant to
  33. // be used in cases where the number of parameter blocks or the sizes are not
  34. // known at compile time.
  35. //
  36. // This example simulates a robot traversing down a 1-dimension hallway with
  37. // noise odometry readings and noisy range readings of the end of the hallway.
  38. // By fusing the noisy odometry and sensor readings this example demonstrates
  39. // how to compute the maximum likelihood estimate (MLE) of the robot's pose at
  40. // each timestep.
  41. //
  42. // The robot starts at the origin, and it is travels to the end of a corridor of
  43. // fixed length specified by the "--corridor_length" flag. It executes a series
  44. // of motion commands to move forward a fixed length, specified by the
  45. // "--pose_separation" flag, at which pose it receives relative odometry
  46. // measurements as well as a range reading of the distance to the end of the
  47. // hallway. The odometry readings are drawn with Gaussian noise and standard
  48. // deviation specified by the "--odometry_stddev" flag, and the range readings
  49. // similarly with standard deviation specified by the "--range-stddev" flag.
  50. //
  51. // There are two types of residuals in this problem:
  52. // 1) The OdometryConstraint residual, that accounts for the odometry readings
  53. // between successive pose estimates of the robot.
  54. // 2) The RangeConstraint residual, that accounts for the errors in the observed
  55. // range readings from each pose.
  56. //
  57. // The OdometryConstraint residual is modeled as an AutoDiffCostFunction with
  58. // a fixed parameter block size of 1, which is the relative odometry being
  59. // solved for, between a pair of successive poses of the robot. Differences
  60. // between observed and computed relative odometry values are penalized weighted
  61. // by the known standard deviation of the odometry readings.
  62. //
  63. // The RangeConstraint residual is modeled as a DynamicAutoDiffCostFunction
  64. // which sums up the relative odometry estimates to compute the estimated
  65. // global pose of the robot, and then computes the expected range reading.
  66. // Differences between the observed and expected range readings are then
  67. // penalized weighted by the standard deviation of readings of the sensor.
  68. // Since the number of poses of the robot is not known at compile time, this
  69. // cost function is implemented as a DynamicAutoDiffCostFunction.
  70. //
  71. // The outputs of the example are the initial values of the odometry and range
  72. // readings, and the range and odometry errors for every pose of the robot.
  73. // After computing the MLE, the computed poses and corrected odometry values
  74. // are printed out, along with the corresponding range and odometry errors. Note
  75. // that as an MLE of a noisy system the errors will not be reduced to zero, but
  76. // the odometry estimates will be updated to maximize the joint likelihood of
  77. // all odometry and range readings of the robot.
  78. //
  79. // Mathematical Formulation
  80. // ======================================================
  81. //
  82. // Let p_0, .., p_N be (N+1) robot poses, where the robot moves down the
  83. // corridor starting from p_0 and ending at p_N. We assume that p_0 is the
  84. // origin of the coordinate system.
  85. // Odometry u_i is the observed relative odometry between pose p_(i-1) and p_i,
  86. // and range reading y_i is the range reading of the end of the corridor from
  87. // pose p_i. Both odometry as well as range readings are noisy, but we wish to
  88. // compute the maximum likelihood estimate (MLE) of corrected odometry values
  89. // u*_0 to u*_(N-1), such that the Belief is optimized:
  90. //
  91. // Belief(u*_(0:N-1) | u_(0:N-1), y_(0:N-1)) 1.
  92. // = P(u*_(0:N-1) | u_(0:N-1), y_(0:N-1)) 2.
  93. // \propto P(y_(0:N-1) | u*_(0:N-1), u_(0:N-1)) P(u*_(0:N-1) | u_(0:N-1)) 3.
  94. // = \prod_i{ P(y_i | u*_(0:i)) P(u*_i | u_i) } 4.
  95. //
  96. // Here, the subscript "(0:i)" is used as shorthand to indicate entries from all
  97. // timesteps 0 to i for that variable, both inclusive.
  98. //
  99. // Bayes' rule is used to derive eq. 3 from 2, and the independence of
  100. // odometry observations and range readings is exploited to derive 4 from 3.
  101. //
  102. // Thus, the Belief, up to scale, is factored as a product of a number of
  103. // terms, two for each pose, where for each pose term there is one term for the
  104. // range reading, P(y_i | u*_(0:i) and one term for the odometry reading,
  105. // P(u*_i | u_i) . Note that the term for the range reading is dependent on all
  106. // odometry values u*_(0:i), while the odometry term, P(u*_i | u_i) depends only
  107. // on a single value, u_i. Both the range reading as well as odometry
  108. // probability terms are modeled as the Normal distribution, and have the form:
  109. //
  110. // p(x) \propto \exp{-((x - x_mean) / x_stddev)^2}
  111. //
  112. // where x refers to either the MLE odometry u* or range reading y, and x_mean
  113. // is the corresponding mean value, u for the odometry terms, and y_expected,
  114. // the expected range reading based on all the previous odometry terms.
  115. // The MLE is thus found by finding those values x* which minimize:
  116. //
  117. // x* = \arg\min{((x - x_mean) / x_stddev)^2}
  118. //
  119. // which is in the nonlinear least-square form, suited to being solved by Ceres.
  120. // The non-linear component arise from the computation of x_mean. The residuals
  121. // ((x - x_mean) / x_stddev) for the residuals that Ceres will optimize. As
  122. // mentioned earlier, the odometry term for each pose depends only on one
  123. // variable, and will be computed by an AutoDiffCostFunction, while the term
  124. // for the range reading will depend on all previous odometry observations, and
  125. // will be computed by a DynamicAutoDiffCostFunction since the number of
  126. // odometry observations will only be known at run time.
  127. #include <algorithm>
  128. #include <cmath>
  129. #include <cstdio>
  130. #include <random>
  131. #include <vector>
  132. #include "ceres/ceres.h"
  133. #include "ceres/dynamic_autodiff_cost_function.h"
  134. #include "gflags/gflags.h"
  135. #include "glog/logging.h"
  136. DEFINE_double(corridor_length,
  137. 30.0,
  138. "Length of the corridor that the robot is travelling down.");
  139. DEFINE_double(pose_separation,
  140. 0.5,
  141. "The distance that the robot traverses between successive "
  142. "odometry updates.");
  143. DEFINE_double(odometry_stddev,
  144. 0.1,
  145. "The standard deviation of odometry error of the robot.");
  146. DEFINE_double(range_stddev,
  147. 0.01,
  148. "The standard deviation of range readings of the robot.");
  149. // The stride length of the dynamic_autodiff_cost_function evaluator.
  150. static constexpr int kStride = 10;
  151. struct OdometryConstraint {
  152. using OdometryCostFunction =
  153. ceres::AutoDiffCostFunction<OdometryConstraint, 1, 1>;
  154. OdometryConstraint(double odometry_mean, double odometry_stddev)
  155. : odometry_mean(odometry_mean), odometry_stddev(odometry_stddev) {}
  156. template <typename T>
  157. bool operator()(const T* const odometry, T* residual) const {
  158. *residual = (*odometry - odometry_mean) / odometry_stddev;
  159. return true;
  160. }
  161. static OdometryCostFunction* Create(const double odometry_value) {
  162. return new OdometryCostFunction(new OdometryConstraint(
  163. odometry_value, CERES_GET_FLAG(FLAGS_odometry_stddev)));
  164. }
  165. const double odometry_mean;
  166. const double odometry_stddev;
  167. };
  168. struct RangeConstraint {
  169. using RangeCostFunction =
  170. ceres::DynamicAutoDiffCostFunction<RangeConstraint, kStride>;
  171. RangeConstraint(int pose_index,
  172. double range_reading,
  173. double range_stddev,
  174. double corridor_length)
  175. : pose_index(pose_index),
  176. range_reading(range_reading),
  177. range_stddev(range_stddev),
  178. corridor_length(corridor_length) {}
  179. template <typename T>
  180. bool operator()(T const* const* relative_poses, T* residuals) const {
  181. T global_pose(0);
  182. for (int i = 0; i <= pose_index; ++i) {
  183. global_pose += relative_poses[i][0];
  184. }
  185. residuals[0] =
  186. (global_pose + range_reading - corridor_length) / range_stddev;
  187. return true;
  188. }
  189. // Factory method to create a CostFunction from a RangeConstraint to
  190. // conveniently add to a ceres problem.
  191. static RangeCostFunction* Create(const int pose_index,
  192. const double range_reading,
  193. std::vector<double>* odometry_values,
  194. std::vector<double*>* parameter_blocks) {
  195. auto* constraint =
  196. new RangeConstraint(pose_index,
  197. range_reading,
  198. CERES_GET_FLAG(FLAGS_range_stddev),
  199. CERES_GET_FLAG(FLAGS_corridor_length));
  200. auto* cost_function = new RangeCostFunction(constraint);
  201. // Add all the parameter blocks that affect this constraint.
  202. parameter_blocks->clear();
  203. for (int i = 0; i <= pose_index; ++i) {
  204. parameter_blocks->push_back(&((*odometry_values)[i]));
  205. cost_function->AddParameterBlock(1);
  206. }
  207. cost_function->SetNumResiduals(1);
  208. return (cost_function);
  209. }
  210. const int pose_index;
  211. const double range_reading;
  212. const double range_stddev;
  213. const double corridor_length;
  214. };
  215. namespace {
  216. void SimulateRobot(std::vector<double>* odometry_values,
  217. std::vector<double>* range_readings) {
  218. const int num_steps =
  219. static_cast<int>(ceil(CERES_GET_FLAG(FLAGS_corridor_length) /
  220. CERES_GET_FLAG(FLAGS_pose_separation)));
  221. std::mt19937 prng;
  222. std::normal_distribution<double> odometry_noise(
  223. 0.0, CERES_GET_FLAG(FLAGS_odometry_stddev));
  224. std::normal_distribution<double> range_noise(
  225. 0.0, CERES_GET_FLAG(FLAGS_range_stddev));
  226. // The robot starts out at the origin.
  227. double robot_location = 0.0;
  228. for (int i = 0; i < num_steps; ++i) {
  229. const double actual_odometry_value =
  230. std::min(CERES_GET_FLAG(FLAGS_pose_separation),
  231. CERES_GET_FLAG(FLAGS_corridor_length) - robot_location);
  232. robot_location += actual_odometry_value;
  233. const double actual_range =
  234. CERES_GET_FLAG(FLAGS_corridor_length) - robot_location;
  235. const double observed_odometry =
  236. actual_odometry_value + odometry_noise(prng);
  237. const double observed_range = actual_range + range_noise(prng);
  238. odometry_values->push_back(observed_odometry);
  239. range_readings->push_back(observed_range);
  240. }
  241. }
  242. void PrintState(const std::vector<double>& odometry_readings,
  243. const std::vector<double>& range_readings) {
  244. CHECK_EQ(odometry_readings.size(), range_readings.size());
  245. double robot_location = 0.0;
  246. printf("pose: location odom range r.error o.error\n");
  247. for (int i = 0; i < odometry_readings.size(); ++i) {
  248. robot_location += odometry_readings[i];
  249. const double range_error = robot_location + range_readings[i] -
  250. CERES_GET_FLAG(FLAGS_corridor_length);
  251. const double odometry_error =
  252. CERES_GET_FLAG(FLAGS_pose_separation) - odometry_readings[i];
  253. printf("%4d: %8.3f %8.3f %8.3f %8.3f %8.3f\n",
  254. static_cast<int>(i),
  255. robot_location,
  256. odometry_readings[i],
  257. range_readings[i],
  258. range_error,
  259. odometry_error);
  260. }
  261. }
  262. } // namespace
  263. int main(int argc, char** argv) {
  264. google::InitGoogleLogging(argv[0]);
  265. GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
  266. // Make sure that the arguments parsed are all positive.
  267. CHECK_GT(CERES_GET_FLAG(FLAGS_corridor_length), 0.0);
  268. CHECK_GT(CERES_GET_FLAG(FLAGS_pose_separation), 0.0);
  269. CHECK_GT(CERES_GET_FLAG(FLAGS_odometry_stddev), 0.0);
  270. CHECK_GT(CERES_GET_FLAG(FLAGS_range_stddev), 0.0);
  271. std::vector<double> odometry_values;
  272. std::vector<double> range_readings;
  273. SimulateRobot(&odometry_values, &range_readings);
  274. printf("Initial values:\n");
  275. PrintState(odometry_values, range_readings);
  276. ceres::Problem problem;
  277. for (int i = 0; i < odometry_values.size(); ++i) {
  278. // Create and add a DynamicAutoDiffCostFunction for the RangeConstraint from
  279. // pose i.
  280. std::vector<double*> parameter_blocks;
  281. RangeConstraint::RangeCostFunction* range_cost_function =
  282. RangeConstraint::Create(
  283. i, range_readings[i], &odometry_values, &parameter_blocks);
  284. problem.AddResidualBlock(range_cost_function, nullptr, parameter_blocks);
  285. // Create and add an AutoDiffCostFunction for the OdometryConstraint for
  286. // pose i.
  287. problem.AddResidualBlock(OdometryConstraint::Create(odometry_values[i]),
  288. nullptr,
  289. &(odometry_values[i]));
  290. }
  291. ceres::Solver::Options solver_options;
  292. solver_options.minimizer_progress_to_stdout = true;
  293. ceres::Solver::Summary summary;
  294. printf("Solving...\n");
  295. ceres::Solve(solver_options, &problem, &summary);
  296. printf("Done.\n");
  297. std::cout << summary.FullReport() << "\n";
  298. printf("Final values:\n");
  299. PrintState(odometry_values, range_readings);
  300. return 0;
  301. }