123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: joydeepb@ri.cmu.edu (Joydeep Biswas)
- //
- // This example demonstrates how to use the DynamicAutoDiffCostFunction
- // variant of CostFunction. The DynamicAutoDiffCostFunction is meant to
- // be used in cases where the number of parameter blocks or the sizes are not
- // known at compile time.
- //
- // This example simulates a robot traversing down a 1-dimension hallway with
- // noise odometry readings and noisy range readings of the end of the hallway.
- // By fusing the noisy odometry and sensor readings this example demonstrates
- // how to compute the maximum likelihood estimate (MLE) of the robot's pose at
- // each timestep.
- //
- // The robot starts at the origin, and it is travels to the end of a corridor of
- // fixed length specified by the "--corridor_length" flag. It executes a series
- // of motion commands to move forward a fixed length, specified by the
- // "--pose_separation" flag, at which pose it receives relative odometry
- // measurements as well as a range reading of the distance to the end of the
- // hallway. The odometry readings are drawn with Gaussian noise and standard
- // deviation specified by the "--odometry_stddev" flag, and the range readings
- // similarly with standard deviation specified by the "--range-stddev" flag.
- //
- // There are two types of residuals in this problem:
- // 1) The OdometryConstraint residual, that accounts for the odometry readings
- // between successive pose estimates of the robot.
- // 2) The RangeConstraint residual, that accounts for the errors in the observed
- // range readings from each pose.
- //
- // The OdometryConstraint residual is modeled as an AutoDiffCostFunction with
- // a fixed parameter block size of 1, which is the relative odometry being
- // solved for, between a pair of successive poses of the robot. Differences
- // between observed and computed relative odometry values are penalized weighted
- // by the known standard deviation of the odometry readings.
- //
- // The RangeConstraint residual is modeled as a DynamicAutoDiffCostFunction
- // which sums up the relative odometry estimates to compute the estimated
- // global pose of the robot, and then computes the expected range reading.
- // Differences between the observed and expected range readings are then
- // penalized weighted by the standard deviation of readings of the sensor.
- // Since the number of poses of the robot is not known at compile time, this
- // cost function is implemented as a DynamicAutoDiffCostFunction.
- //
- // The outputs of the example are the initial values of the odometry and range
- // readings, and the range and odometry errors for every pose of the robot.
- // After computing the MLE, the computed poses and corrected odometry values
- // are printed out, along with the corresponding range and odometry errors. Note
- // that as an MLE of a noisy system the errors will not be reduced to zero, but
- // the odometry estimates will be updated to maximize the joint likelihood of
- // all odometry and range readings of the robot.
- //
- // Mathematical Formulation
- // ======================================================
- //
- // Let p_0, .., p_N be (N+1) robot poses, where the robot moves down the
- // corridor starting from p_0 and ending at p_N. We assume that p_0 is the
- // origin of the coordinate system.
- // Odometry u_i is the observed relative odometry between pose p_(i-1) and p_i,
- // and range reading y_i is the range reading of the end of the corridor from
- // pose p_i. Both odometry as well as range readings are noisy, but we wish to
- // compute the maximum likelihood estimate (MLE) of corrected odometry values
- // u*_0 to u*_(N-1), such that the Belief is optimized:
- //
- // Belief(u*_(0:N-1) | u_(0:N-1), y_(0:N-1)) 1.
- // = P(u*_(0:N-1) | u_(0:N-1), y_(0:N-1)) 2.
- // \propto P(y_(0:N-1) | u*_(0:N-1), u_(0:N-1)) P(u*_(0:N-1) | u_(0:N-1)) 3.
- // = \prod_i{ P(y_i | u*_(0:i)) P(u*_i | u_i) } 4.
- //
- // Here, the subscript "(0:i)" is used as shorthand to indicate entries from all
- // timesteps 0 to i for that variable, both inclusive.
- //
- // Bayes' rule is used to derive eq. 3 from 2, and the independence of
- // odometry observations and range readings is exploited to derive 4 from 3.
- //
- // Thus, the Belief, up to scale, is factored as a product of a number of
- // terms, two for each pose, where for each pose term there is one term for the
- // range reading, P(y_i | u*_(0:i) and one term for the odometry reading,
- // P(u*_i | u_i) . Note that the term for the range reading is dependent on all
- // odometry values u*_(0:i), while the odometry term, P(u*_i | u_i) depends only
- // on a single value, u_i. Both the range reading as well as odometry
- // probability terms are modeled as the Normal distribution, and have the form:
- //
- // p(x) \propto \exp{-((x - x_mean) / x_stddev)^2}
- //
- // where x refers to either the MLE odometry u* or range reading y, and x_mean
- // is the corresponding mean value, u for the odometry terms, and y_expected,
- // the expected range reading based on all the previous odometry terms.
- // The MLE is thus found by finding those values x* which minimize:
- //
- // x* = \arg\min{((x - x_mean) / x_stddev)^2}
- //
- // which is in the nonlinear least-square form, suited to being solved by Ceres.
- // The non-linear component arise from the computation of x_mean. The residuals
- // ((x - x_mean) / x_stddev) for the residuals that Ceres will optimize. As
- // mentioned earlier, the odometry term for each pose depends only on one
- // variable, and will be computed by an AutoDiffCostFunction, while the term
- // for the range reading will depend on all previous odometry observations, and
- // will be computed by a DynamicAutoDiffCostFunction since the number of
- // odometry observations will only be known at run time.
- #include <algorithm>
- #include <cmath>
- #include <cstdio>
- #include <random>
- #include <vector>
- #include "ceres/ceres.h"
- #include "ceres/dynamic_autodiff_cost_function.h"
- #include "gflags/gflags.h"
- #include "glog/logging.h"
- DEFINE_double(corridor_length,
- 30.0,
- "Length of the corridor that the robot is travelling down.");
- DEFINE_double(pose_separation,
- 0.5,
- "The distance that the robot traverses between successive "
- "odometry updates.");
- DEFINE_double(odometry_stddev,
- 0.1,
- "The standard deviation of odometry error of the robot.");
- DEFINE_double(range_stddev,
- 0.01,
- "The standard deviation of range readings of the robot.");
- // The stride length of the dynamic_autodiff_cost_function evaluator.
- static constexpr int kStride = 10;
- struct OdometryConstraint {
- using OdometryCostFunction =
- ceres::AutoDiffCostFunction<OdometryConstraint, 1, 1>;
- OdometryConstraint(double odometry_mean, double odometry_stddev)
- : odometry_mean(odometry_mean), odometry_stddev(odometry_stddev) {}
- template <typename T>
- bool operator()(const T* const odometry, T* residual) const {
- *residual = (*odometry - odometry_mean) / odometry_stddev;
- return true;
- }
- static OdometryCostFunction* Create(const double odometry_value) {
- return new OdometryCostFunction(new OdometryConstraint(
- odometry_value, CERES_GET_FLAG(FLAGS_odometry_stddev)));
- }
- const double odometry_mean;
- const double odometry_stddev;
- };
- struct RangeConstraint {
- using RangeCostFunction =
- ceres::DynamicAutoDiffCostFunction<RangeConstraint, kStride>;
- RangeConstraint(int pose_index,
- double range_reading,
- double range_stddev,
- double corridor_length)
- : pose_index(pose_index),
- range_reading(range_reading),
- range_stddev(range_stddev),
- corridor_length(corridor_length) {}
- template <typename T>
- bool operator()(T const* const* relative_poses, T* residuals) const {
- T global_pose(0);
- for (int i = 0; i <= pose_index; ++i) {
- global_pose += relative_poses[i][0];
- }
- residuals[0] =
- (global_pose + range_reading - corridor_length) / range_stddev;
- return true;
- }
- // Factory method to create a CostFunction from a RangeConstraint to
- // conveniently add to a ceres problem.
- static RangeCostFunction* Create(const int pose_index,
- const double range_reading,
- std::vector<double>* odometry_values,
- std::vector<double*>* parameter_blocks) {
- auto* constraint =
- new RangeConstraint(pose_index,
- range_reading,
- CERES_GET_FLAG(FLAGS_range_stddev),
- CERES_GET_FLAG(FLAGS_corridor_length));
- auto* cost_function = new RangeCostFunction(constraint);
- // Add all the parameter blocks that affect this constraint.
- parameter_blocks->clear();
- for (int i = 0; i <= pose_index; ++i) {
- parameter_blocks->push_back(&((*odometry_values)[i]));
- cost_function->AddParameterBlock(1);
- }
- cost_function->SetNumResiduals(1);
- return (cost_function);
- }
- const int pose_index;
- const double range_reading;
- const double range_stddev;
- const double corridor_length;
- };
- namespace {
- void SimulateRobot(std::vector<double>* odometry_values,
- std::vector<double>* range_readings) {
- const int num_steps =
- static_cast<int>(ceil(CERES_GET_FLAG(FLAGS_corridor_length) /
- CERES_GET_FLAG(FLAGS_pose_separation)));
- std::mt19937 prng;
- std::normal_distribution<double> odometry_noise(
- 0.0, CERES_GET_FLAG(FLAGS_odometry_stddev));
- std::normal_distribution<double> range_noise(
- 0.0, CERES_GET_FLAG(FLAGS_range_stddev));
- // The robot starts out at the origin.
- double robot_location = 0.0;
- for (int i = 0; i < num_steps; ++i) {
- const double actual_odometry_value =
- std::min(CERES_GET_FLAG(FLAGS_pose_separation),
- CERES_GET_FLAG(FLAGS_corridor_length) - robot_location);
- robot_location += actual_odometry_value;
- const double actual_range =
- CERES_GET_FLAG(FLAGS_corridor_length) - robot_location;
- const double observed_odometry =
- actual_odometry_value + odometry_noise(prng);
- const double observed_range = actual_range + range_noise(prng);
- odometry_values->push_back(observed_odometry);
- range_readings->push_back(observed_range);
- }
- }
- void PrintState(const std::vector<double>& odometry_readings,
- const std::vector<double>& range_readings) {
- CHECK_EQ(odometry_readings.size(), range_readings.size());
- double robot_location = 0.0;
- printf("pose: location odom range r.error o.error\n");
- for (int i = 0; i < odometry_readings.size(); ++i) {
- robot_location += odometry_readings[i];
- const double range_error = robot_location + range_readings[i] -
- CERES_GET_FLAG(FLAGS_corridor_length);
- const double odometry_error =
- CERES_GET_FLAG(FLAGS_pose_separation) - odometry_readings[i];
- printf("%4d: %8.3f %8.3f %8.3f %8.3f %8.3f\n",
- static_cast<int>(i),
- robot_location,
- odometry_readings[i],
- range_readings[i],
- range_error,
- odometry_error);
- }
- }
- } // namespace
- int main(int argc, char** argv) {
- google::InitGoogleLogging(argv[0]);
- GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
- // Make sure that the arguments parsed are all positive.
- CHECK_GT(CERES_GET_FLAG(FLAGS_corridor_length), 0.0);
- CHECK_GT(CERES_GET_FLAG(FLAGS_pose_separation), 0.0);
- CHECK_GT(CERES_GET_FLAG(FLAGS_odometry_stddev), 0.0);
- CHECK_GT(CERES_GET_FLAG(FLAGS_range_stddev), 0.0);
- std::vector<double> odometry_values;
- std::vector<double> range_readings;
- SimulateRobot(&odometry_values, &range_readings);
- printf("Initial values:\n");
- PrintState(odometry_values, range_readings);
- ceres::Problem problem;
- for (int i = 0; i < odometry_values.size(); ++i) {
- // Create and add a DynamicAutoDiffCostFunction for the RangeConstraint from
- // pose i.
- std::vector<double*> parameter_blocks;
- RangeConstraint::RangeCostFunction* range_cost_function =
- RangeConstraint::Create(
- i, range_readings[i], &odometry_values, ¶meter_blocks);
- problem.AddResidualBlock(range_cost_function, nullptr, parameter_blocks);
- // Create and add an AutoDiffCostFunction for the OdometryConstraint for
- // pose i.
- problem.AddResidualBlock(OdometryConstraint::Create(odometry_values[i]),
- nullptr,
- &(odometry_values[i]));
- }
- ceres::Solver::Options solver_options;
- solver_options.minimizer_progress_to_stdout = true;
- ceres::Solver::Summary summary;
- printf("Solving...\n");
- ceres::Solve(solver_options, &problem, &summary);
- printf("Done.\n");
- std::cout << summary.FullReport() << "\n";
- printf("Final values:\n");
- PrintState(odometry_values, range_readings);
- return 0;
- }
|