123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- //
- // The National Institute of Standards and Technology has released a
- // set of problems to test non-linear least squares solvers.
- //
- // More information about the background on these problems and
- // suggested evaluation methodology can be found at:
- //
- // http://www.itl.nist.gov/div898/strd/nls/nls_info.shtml
- //
- // The problem data themselves can be found at
- //
- // http://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
- //
- // The problems are divided into three levels of difficulty, Easy,
- // Medium and Hard. For each problem there are two starting guesses,
- // the first one far away from the global minimum and the second
- // closer to it.
- //
- // A problem is considered successfully solved, if every components of
- // the solution matches the globally optimal solution in at least 4
- // digits or more.
- //
- // This dataset was used for an evaluation of Non-linear least squares
- // solvers:
- //
- // P. F. Mondragon & B. Borchers, A Comparison of Nonlinear Regression
- // Codes, Journal of Modern Applied Statistical Methods, 4(1):343-351,
- // 2005.
- //
- // The results from Mondragon & Borchers can be summarized as
- // Excel Gnuplot GaussFit HBN MinPack
- // Average LRE 2.3 4.3 4.0 6.8 4.4
- // Winner 1 5 12 29 12
- //
- // Where the row Winner counts, the number of problems for which the
- // solver had the highest LRE.
- // In this file, we implement the same evaluation methodology using
- // Ceres. Currently using Levenberg-Marquardt with DENSE_QR, we get
- //
- // Excel Gnuplot GaussFit HBN MinPack Ceres
- // Average LRE 2.3 4.3 4.0 6.8 4.4 9.4
- // Winner 0 0 5 11 2 41
- #include <cstdlib>
- #include <fstream>
- #include <iostream>
- #include <iterator>
- #include <string>
- #include <vector>
- #include "Eigen/Core"
- #include "ceres/ceres.h"
- #include "ceres/tiny_solver.h"
- #include "ceres/tiny_solver_cost_function_adapter.h"
- #include "gflags/gflags.h"
- #include "glog/logging.h"
- DEFINE_bool(use_tiny_solver, false, "Use TinySolver instead of Ceres::Solver");
- DEFINE_string(nist_data_dir,
- "",
- "Directory containing the NIST non-linear regression examples");
- DEFINE_string(minimizer,
- "trust_region",
- "Minimizer type to use, choices are: line_search & trust_region");
- DEFINE_string(trust_region_strategy,
- "levenberg_marquardt",
- "Options are: levenberg_marquardt, dogleg");
- DEFINE_string(dogleg,
- "traditional_dogleg",
- "Options are: traditional_dogleg, subspace_dogleg");
- DEFINE_string(linear_solver,
- "dense_qr",
- "Options are: sparse_cholesky, dense_qr, dense_normal_cholesky "
- "and cgnr");
- DEFINE_string(dense_linear_algebra_library,
- "eigen",
- "Options are: eigen, lapack, and cuda.");
- DEFINE_string(preconditioner, "jacobi", "Options are: identity, jacobi");
- DEFINE_string(line_search,
- "wolfe",
- "Line search algorithm to use, choices are: armijo and wolfe.");
- DEFINE_string(line_search_direction,
- "lbfgs",
- "Line search direction algorithm to use, choices: lbfgs, bfgs");
- DEFINE_int32(max_line_search_iterations,
- 20,
- "Maximum number of iterations for each line search.");
- DEFINE_int32(max_line_search_restarts,
- 10,
- "Maximum number of restarts of line search direction algorithm.");
- DEFINE_string(line_search_interpolation,
- "cubic",
- "Degree of polynomial approximation in line search, choices are: "
- "bisection, quadratic & cubic.");
- DEFINE_int32(lbfgs_rank,
- 20,
- "Rank of L-BFGS inverse Hessian approximation in line search.");
- DEFINE_bool(approximate_eigenvalue_bfgs_scaling,
- false,
- "Use approximate eigenvalue scaling in (L)BFGS line search.");
- DEFINE_double(sufficient_decrease,
- 1.0e-4,
- "Line search Armijo sufficient (function) decrease factor.");
- DEFINE_double(sufficient_curvature_decrease,
- 0.9,
- "Line search Wolfe sufficient curvature decrease factor.");
- DEFINE_int32(num_iterations, 10000, "Number of iterations");
- DEFINE_bool(nonmonotonic_steps,
- false,
- "Trust region algorithm can use nonmonotic steps");
- DEFINE_double(initial_trust_region_radius, 1e4, "Initial trust region radius");
- DEFINE_bool(use_numeric_diff,
- false,
- "Use numeric differentiation instead of automatic "
- "differentiation.");
- DEFINE_string(numeric_diff_method,
- "ridders",
- "When using numeric differentiation, selects algorithm. Options "
- "are: central, forward, ridders.");
- DEFINE_double(ridders_step_size,
- 1e-9,
- "Initial step size for Ridders numeric differentiation.");
- DEFINE_int32(ridders_extrapolations,
- 3,
- "Maximal number of Ridders extrapolations.");
- namespace ceres::examples {
- namespace {
- using Eigen::Dynamic;
- using Eigen::RowMajor;
- using Vector = Eigen::Matrix<double, Dynamic, 1>;
- using Matrix = Eigen::Matrix<double, Dynamic, Dynamic, RowMajor>;
- void SplitStringUsingChar(const std::string& full,
- const char delim,
- std::vector<std::string>* result) {
- std::back_insert_iterator<std::vector<std::string>> it(*result);
- const char* p = full.data();
- const char* end = p + full.size();
- while (p != end) {
- if (*p == delim) {
- ++p;
- } else {
- const char* start = p;
- while (++p != end && *p != delim) {
- // Skip to the next occurrence of the delimiter.
- }
- *it++ = std::string(start, p - start);
- }
- }
- }
- bool GetAndSplitLine(std::ifstream& ifs, std::vector<std::string>* pieces) {
- pieces->clear();
- char buf[256];
- ifs.getline(buf, 256);
- SplitStringUsingChar(std::string(buf), ' ', pieces);
- return true;
- }
- void SkipLines(std::ifstream& ifs, int num_lines) {
- char buf[256];
- for (int i = 0; i < num_lines; ++i) {
- ifs.getline(buf, 256);
- }
- }
- class NISTProblem {
- public:
- explicit NISTProblem(const std::string& filename) {
- std::ifstream ifs(filename.c_str(), std::ifstream::in);
- CHECK(ifs) << "Unable to open : " << filename;
- std::vector<std::string> pieces;
- SkipLines(ifs, 24);
- GetAndSplitLine(ifs, &pieces);
- const int kNumResponses = std::atoi(pieces[1].c_str());
- GetAndSplitLine(ifs, &pieces);
- const int kNumPredictors = std::atoi(pieces[0].c_str());
- GetAndSplitLine(ifs, &pieces);
- const int kNumObservations = std::atoi(pieces[0].c_str());
- SkipLines(ifs, 4);
- GetAndSplitLine(ifs, &pieces);
- const int kNumParameters = std::atoi(pieces[0].c_str());
- SkipLines(ifs, 8);
- // Get the first line of initial and final parameter values to
- // determine the number of tries.
- GetAndSplitLine(ifs, &pieces);
- const int kNumTries = pieces.size() - 4;
- predictor_.resize(kNumObservations, kNumPredictors);
- response_.resize(kNumObservations, kNumResponses);
- initial_parameters_.resize(kNumTries, kNumParameters);
- final_parameters_.resize(1, kNumParameters);
- // Parse the line for parameter b1.
- int parameter_id = 0;
- for (int i = 0; i < kNumTries; ++i) {
- initial_parameters_(i, parameter_id) = std::atof(pieces[i + 2].c_str());
- }
- final_parameters_(0, parameter_id) =
- std::atof(pieces[2 + kNumTries].c_str());
- // Parse the remaining parameter lines.
- for (int parameter_id = 1; parameter_id < kNumParameters; ++parameter_id) {
- GetAndSplitLine(ifs, &pieces);
- // b2, b3, ....
- for (int i = 0; i < kNumTries; ++i) {
- initial_parameters_(i, parameter_id) = std::atof(pieces[i + 2].c_str());
- }
- final_parameters_(0, parameter_id) =
- std::atof(pieces[2 + kNumTries].c_str());
- }
- // Certified cost
- SkipLines(ifs, 1);
- GetAndSplitLine(ifs, &pieces);
- certified_cost_ = std::atof(pieces[4].c_str()) / 2.0;
- // Read the observations.
- SkipLines(ifs, 18 - kNumParameters);
- for (int i = 0; i < kNumObservations; ++i) {
- GetAndSplitLine(ifs, &pieces);
- // Response.
- for (int j = 0; j < kNumResponses; ++j) {
- response_(i, j) = std::atof(pieces[j].c_str());
- }
- // Predictor variables.
- for (int j = 0; j < kNumPredictors; ++j) {
- predictor_(i, j) = std::atof(pieces[j + kNumResponses].c_str());
- }
- }
- }
- Matrix initial_parameters(int start) const {
- return initial_parameters_.row(start);
- } // NOLINT
- Matrix final_parameters() const { return final_parameters_; }
- Matrix predictor() const { return predictor_; }
- Matrix response() const { return response_; }
- int predictor_size() const { return predictor_.cols(); }
- int num_observations() const { return predictor_.rows(); }
- int response_size() const { return response_.cols(); }
- int num_parameters() const { return initial_parameters_.cols(); }
- int num_starts() const { return initial_parameters_.rows(); }
- double certified_cost() const { return certified_cost_; }
- private:
- Matrix predictor_;
- Matrix response_;
- Matrix initial_parameters_;
- Matrix final_parameters_;
- double certified_cost_;
- };
- #define NIST_BEGIN(CostFunctionName) \
- struct CostFunctionName { \
- CostFunctionName(const double* const x, \
- const double* const y, \
- const int n) \
- : x_(x), y_(y), n_(n) {} \
- const double* x_; \
- const double* y_; \
- const int n_; \
- template <typename T> \
- bool operator()(const T* const b, T* residual) const { \
- for (int i = 0; i < n_; ++i) { \
- const T x(x_[i]); \
- residual[i] = y_[i] - (
- // clang-format off
- #define NIST_END ); } return true; }};
- // y = b1 * (b2+x)**(-1/b3) + e
- NIST_BEGIN(Bennet5)
- b[0] * pow(b[1] + x, -1.0 / b[2])
- NIST_END
- // y = b1*(1-exp[-b2*x]) + e
- NIST_BEGIN(BoxBOD)
- b[0] * (1.0 - exp(-b[1] * x))
- NIST_END
- // y = exp[-b1*x]/(b2+b3*x) + e
- NIST_BEGIN(Chwirut)
- exp(-b[0] * x) / (b[1] + b[2] * x)
- NIST_END
- // y = b1*x**b2 + e
- NIST_BEGIN(DanWood)
- b[0] * pow(x, b[1])
- NIST_END
- // y = b1*exp( -b2*x ) + b3*exp( -(x-b4)**2 / b5**2 )
- // + b6*exp( -(x-b7)**2 / b8**2 ) + e
- NIST_BEGIN(Gauss)
- b[0] * exp(-b[1] * x) +
- b[2] * exp(-pow((x - b[3])/b[4], 2)) +
- b[5] * exp(-pow((x - b[6])/b[7], 2))
- NIST_END
- // y = b1*exp(-b2*x) + b3*exp(-b4*x) + b5*exp(-b6*x) + e
- NIST_BEGIN(Lanczos)
- b[0] * exp(-b[1] * x) + b[2] * exp(-b[3] * x) + b[4] * exp(-b[5] * x)
- NIST_END
- // y = (b1+b2*x+b3*x**2+b4*x**3) /
- // (1+b5*x+b6*x**2+b7*x**3) + e
- NIST_BEGIN(Hahn1)
- (b[0] + b[1] * x + b[2] * x * x + b[3] * x * x * x) /
- (1.0 + b[4] * x + b[5] * x * x + b[6] * x * x * x)
- NIST_END
- // y = (b1 + b2*x + b3*x**2) /
- // (1 + b4*x + b5*x**2) + e
- NIST_BEGIN(Kirby2)
- (b[0] + b[1] * x + b[2] * x * x) /
- (1.0 + b[3] * x + b[4] * x * x)
- NIST_END
- // y = b1*(x**2+x*b2) / (x**2+x*b3+b4) + e
- NIST_BEGIN(MGH09)
- b[0] * (x * x + x * b[1]) / (x * x + x * b[2] + b[3])
- NIST_END
- // y = b1 * exp[b2/(x+b3)] + e
- NIST_BEGIN(MGH10)
- b[0] * exp(b[1] / (x + b[2]))
- NIST_END
- // y = b1 + b2*exp[-x*b4] + b3*exp[-x*b5]
- NIST_BEGIN(MGH17)
- b[0] + b[1] * exp(-x * b[3]) + b[2] * exp(-x * b[4])
- NIST_END
- // y = b1*(1-exp[-b2*x]) + e
- NIST_BEGIN(Misra1a)
- b[0] * (1.0 - exp(-b[1] * x))
- NIST_END
- // y = b1 * (1-(1+b2*x/2)**(-2)) + e
- NIST_BEGIN(Misra1b)
- b[0] * (1.0 - 1.0/ ((1.0 + b[1] * x / 2.0) * (1.0 + b[1] * x / 2.0))) // NOLINT
- NIST_END
- // y = b1 * (1-(1+2*b2*x)**(-.5)) + e
- NIST_BEGIN(Misra1c)
- b[0] * (1.0 - pow(1.0 + 2.0 * b[1] * x, -0.5))
- NIST_END
- // y = b1*b2*x*((1+b2*x)**(-1)) + e
- NIST_BEGIN(Misra1d)
- b[0] * b[1] * x / (1.0 + b[1] * x)
- NIST_END
- const double kPi = 3.141592653589793238462643383279;
- // pi = 3.141592653589793238462643383279E0
- // y = b1 - b2*x - arctan[b3/(x-b4)]/pi + e
- NIST_BEGIN(Roszman1)
- b[0] - b[1] * x - atan2(b[2], (x - b[3])) / kPi
- NIST_END
- // y = b1 / (1+exp[b2-b3*x]) + e
- NIST_BEGIN(Rat42)
- b[0] / (1.0 + exp(b[1] - b[2] * x))
- NIST_END
- // y = b1 / ((1+exp[b2-b3*x])**(1/b4)) + e
- NIST_BEGIN(Rat43)
- b[0] / pow(1.0 + exp(b[1] - b[2] * x), 1.0 / b[3])
- NIST_END
- // y = (b1 + b2*x + b3*x**2 + b4*x**3) /
- // (1 + b5*x + b6*x**2 + b7*x**3) + e
- NIST_BEGIN(Thurber)
- (b[0] + b[1] * x + b[2] * x * x + b[3] * x * x * x) /
- (1.0 + b[4] * x + b[5] * x * x + b[6] * x * x * x)
- NIST_END
- // y = b1 + b2*cos( 2*pi*x/12 ) + b3*sin( 2*pi*x/12 )
- // + b5*cos( 2*pi*x/b4 ) + b6*sin( 2*pi*x/b4 )
- // + b8*cos( 2*pi*x/b7 ) + b9*sin( 2*pi*x/b7 ) + e
- NIST_BEGIN(ENSO)
- b[0] + b[1] * cos(2.0 * kPi * x / 12.0) +
- b[2] * sin(2.0 * kPi * x / 12.0) +
- b[4] * cos(2.0 * kPi * x / b[3]) +
- b[5] * sin(2.0 * kPi * x / b[3]) +
- b[7] * cos(2.0 * kPi * x / b[6]) +
- b[8] * sin(2.0 * kPi * x / b[6])
- NIST_END
- // y = (b1/b2) * exp[-0.5*((x-b3)/b2)**2] + e
- NIST_BEGIN(Eckerle4)
- b[0] / b[1] * exp(-0.5 * pow((x - b[2])/b[1], 2))
- NIST_END
- struct Nelson {
- public:
- Nelson(const double* const x, const double* const y, const int n)
- : x_(x), y_(y), n_(n) {}
- template <typename T>
- bool operator()(const T* const b, T* residual) const {
- // log[y] = b1 - b2*x1 * exp[-b3*x2] + e
- for (int i = 0; i < n_; ++i) {
- residual[i] = log(y_[i]) - (b[0] - b[1] * x_[2 * i] * exp(-b[2] * x_[2 * i + 1]));
- }
- return true;
- }
- private:
- const double* x_;
- const double* y_;
- const int n_;
- };
- // clang-format on
- static void SetNumericDiffOptions(ceres::NumericDiffOptions* options) {
- options->max_num_ridders_extrapolations =
- CERES_GET_FLAG(FLAGS_ridders_extrapolations);
- options->ridders_relative_initial_step_size =
- CERES_GET_FLAG(FLAGS_ridders_step_size);
- }
- void SetMinimizerOptions(ceres::Solver::Options* options) {
- CHECK(ceres::StringToMinimizerType(CERES_GET_FLAG(FLAGS_minimizer),
- &options->minimizer_type));
- CHECK(ceres::StringToLinearSolverType(CERES_GET_FLAG(FLAGS_linear_solver),
- &options->linear_solver_type));
- CHECK(StringToDenseLinearAlgebraLibraryType(
- CERES_GET_FLAG(FLAGS_dense_linear_algebra_library),
- &options->dense_linear_algebra_library_type));
- CHECK(ceres::StringToPreconditionerType(CERES_GET_FLAG(FLAGS_preconditioner),
- &options->preconditioner_type));
- CHECK(ceres::StringToTrustRegionStrategyType(
- CERES_GET_FLAG(FLAGS_trust_region_strategy),
- &options->trust_region_strategy_type));
- CHECK(ceres::StringToDoglegType(CERES_GET_FLAG(FLAGS_dogleg),
- &options->dogleg_type));
- CHECK(ceres::StringToLineSearchDirectionType(
- CERES_GET_FLAG(FLAGS_line_search_direction),
- &options->line_search_direction_type));
- CHECK(ceres::StringToLineSearchType(CERES_GET_FLAG(FLAGS_line_search),
- &options->line_search_type));
- CHECK(ceres::StringToLineSearchInterpolationType(
- CERES_GET_FLAG(FLAGS_line_search_interpolation),
- &options->line_search_interpolation_type));
- options->max_num_iterations = CERES_GET_FLAG(FLAGS_num_iterations);
- options->use_nonmonotonic_steps = CERES_GET_FLAG(FLAGS_nonmonotonic_steps);
- options->initial_trust_region_radius =
- CERES_GET_FLAG(FLAGS_initial_trust_region_radius);
- options->max_lbfgs_rank = CERES_GET_FLAG(FLAGS_lbfgs_rank);
- options->line_search_sufficient_function_decrease =
- CERES_GET_FLAG(FLAGS_sufficient_decrease);
- options->line_search_sufficient_curvature_decrease =
- CERES_GET_FLAG(FLAGS_sufficient_curvature_decrease);
- options->max_num_line_search_step_size_iterations =
- CERES_GET_FLAG(FLAGS_max_line_search_iterations);
- options->max_num_line_search_direction_restarts =
- CERES_GET_FLAG(FLAGS_max_line_search_restarts);
- options->use_approximate_eigenvalue_bfgs_scaling =
- CERES_GET_FLAG(FLAGS_approximate_eigenvalue_bfgs_scaling);
- options->function_tolerance = std::numeric_limits<double>::epsilon();
- options->gradient_tolerance = std::numeric_limits<double>::epsilon();
- options->parameter_tolerance = std::numeric_limits<double>::epsilon();
- }
- std::string JoinPath(const std::string& dirname, const std::string& basename) {
- #ifdef _WIN32
- static const char separator = '\\';
- #else
- static const char separator = '/';
- #endif // _WIN32
- if ((!basename.empty() && basename[0] == separator) || dirname.empty()) {
- return basename;
- } else if (dirname[dirname.size() - 1] == separator) {
- return dirname + basename;
- } else {
- return dirname + std::string(&separator, 1) + basename;
- }
- }
- template <typename Model, int num_parameters>
- CostFunction* CreateCostFunction(const Matrix& predictor,
- const Matrix& response,
- const int num_observations) {
- auto* model = new Model(predictor.data(), response.data(), num_observations);
- ceres::CostFunction* cost_function = nullptr;
- if (CERES_GET_FLAG(FLAGS_use_numeric_diff)) {
- ceres::NumericDiffOptions options;
- SetNumericDiffOptions(&options);
- if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "central") {
- cost_function = new NumericDiffCostFunction<Model,
- ceres::CENTRAL,
- ceres::DYNAMIC,
- num_parameters>(
- model, ceres::TAKE_OWNERSHIP, num_observations, options);
- } else if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "forward") {
- cost_function = new NumericDiffCostFunction<Model,
- ceres::FORWARD,
- ceres::DYNAMIC,
- num_parameters>(
- model, ceres::TAKE_OWNERSHIP, num_observations, options);
- } else if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "ridders") {
- cost_function = new NumericDiffCostFunction<Model,
- ceres::RIDDERS,
- ceres::DYNAMIC,
- num_parameters>(
- model, ceres::TAKE_OWNERSHIP, num_observations, options);
- } else {
- LOG(ERROR) << "Invalid numeric diff method specified";
- return nullptr;
- }
- } else {
- cost_function =
- new ceres::AutoDiffCostFunction<Model, ceres::DYNAMIC, num_parameters>(
- model, num_observations);
- }
- return cost_function;
- }
- double ComputeLRE(const Matrix& expected, const Matrix& actual) {
- // Compute the LRE by comparing each component of the solution
- // with the ground truth, and taking the minimum.
- const double kMaxNumSignificantDigits = 11;
- double log_relative_error = kMaxNumSignificantDigits + 1;
- for (int i = 0; i < expected.cols(); ++i) {
- const double tmp_lre = -std::log10(std::fabs(expected(i) - actual(i)) /
- std::fabs(expected(i)));
- // The maximum LRE is capped at 11 - the precision at which the
- // ground truth is known.
- //
- // The minimum LRE is capped at 0 - no digits match between the
- // computed solution and the ground truth.
- log_relative_error =
- std::min(log_relative_error,
- std::max(0.0, std::min(kMaxNumSignificantDigits, tmp_lre)));
- }
- return log_relative_error;
- }
- template <typename Model, int num_parameters>
- int RegressionDriver(const std::string& filename) {
- NISTProblem nist_problem(
- JoinPath(CERES_GET_FLAG(FLAGS_nist_data_dir), filename));
- CHECK_EQ(num_parameters, nist_problem.num_parameters());
- Matrix predictor = nist_problem.predictor();
- Matrix response = nist_problem.response();
- Matrix final_parameters = nist_problem.final_parameters();
- printf("%s\n", filename.c_str());
- // Each NIST problem comes with multiple starting points, so we
- // construct the problem from scratch for each case and solve it.
- int num_success = 0;
- for (int start = 0; start < nist_problem.num_starts(); ++start) {
- Matrix initial_parameters = nist_problem.initial_parameters(start);
- ceres::CostFunction* cost_function =
- CreateCostFunction<Model, num_parameters>(
- predictor, response, nist_problem.num_observations());
- double initial_cost;
- double final_cost;
- if (!CERES_GET_FLAG(FLAGS_use_tiny_solver)) {
- ceres::Problem problem;
- problem.AddResidualBlock(
- cost_function, nullptr, initial_parameters.data());
- ceres::Solver::Summary summary;
- ceres::Solver::Options options;
- SetMinimizerOptions(&options);
- Solve(options, &problem, &summary);
- initial_cost = summary.initial_cost;
- final_cost = summary.final_cost;
- } else {
- ceres::TinySolverCostFunctionAdapter<Eigen::Dynamic, num_parameters> cfa(
- *cost_function);
- using Solver = ceres::TinySolver<
- ceres::TinySolverCostFunctionAdapter<Eigen::Dynamic, num_parameters>>;
- Solver solver;
- solver.options.max_num_iterations = CERES_GET_FLAG(FLAGS_num_iterations);
- solver.options.gradient_tolerance =
- std::numeric_limits<double>::epsilon();
- solver.options.parameter_tolerance =
- std::numeric_limits<double>::epsilon();
- solver.options.function_tolerance = 0.0;
- Eigen::Matrix<double, num_parameters, 1> x;
- x = initial_parameters.transpose();
- typename Solver::Summary summary = solver.Solve(cfa, &x);
- initial_parameters = x;
- initial_cost = summary.initial_cost;
- final_cost = summary.final_cost;
- delete cost_function;
- }
- const double log_relative_error =
- ComputeLRE(nist_problem.final_parameters(), initial_parameters);
- const int kMinNumMatchingDigits = 4;
- if (log_relative_error > kMinNumMatchingDigits) {
- ++num_success;
- }
- printf(
- "start: %d status: %s lre: %4.1f initial cost: %e final cost:%e "
- "certified cost: %e\n",
- start + 1,
- log_relative_error < kMinNumMatchingDigits ? "FAILURE" : "SUCCESS",
- log_relative_error,
- initial_cost,
- final_cost,
- nist_problem.certified_cost());
- }
- return num_success;
- }
- void SolveNISTProblems() {
- if (CERES_GET_FLAG(FLAGS_nist_data_dir).empty()) {
- LOG(FATAL) << "Must specify the directory containing the NIST problems";
- }
- std::cout << "Lower Difficulty\n";
- int easy_success = 0;
- easy_success += RegressionDriver<Misra1a, 2>("Misra1a.dat");
- easy_success += RegressionDriver<Chwirut, 3>("Chwirut1.dat");
- easy_success += RegressionDriver<Chwirut, 3>("Chwirut2.dat");
- easy_success += RegressionDriver<Lanczos, 6>("Lanczos3.dat");
- easy_success += RegressionDriver<Gauss, 8>("Gauss1.dat");
- easy_success += RegressionDriver<Gauss, 8>("Gauss2.dat");
- easy_success += RegressionDriver<DanWood, 2>("DanWood.dat");
- easy_success += RegressionDriver<Misra1b, 2>("Misra1b.dat");
- std::cout << "\nMedium Difficulty\n";
- int medium_success = 0;
- medium_success += RegressionDriver<Kirby2, 5>("Kirby2.dat");
- medium_success += RegressionDriver<Hahn1, 7>("Hahn1.dat");
- medium_success += RegressionDriver<Nelson, 3>("Nelson.dat");
- medium_success += RegressionDriver<MGH17, 5>("MGH17.dat");
- medium_success += RegressionDriver<Lanczos, 6>("Lanczos1.dat");
- medium_success += RegressionDriver<Lanczos, 6>("Lanczos2.dat");
- medium_success += RegressionDriver<Gauss, 8>("Gauss3.dat");
- medium_success += RegressionDriver<Misra1c, 2>("Misra1c.dat");
- medium_success += RegressionDriver<Misra1d, 2>("Misra1d.dat");
- medium_success += RegressionDriver<Roszman1, 4>("Roszman1.dat");
- medium_success += RegressionDriver<ENSO, 9>("ENSO.dat");
- std::cout << "\nHigher Difficulty\n";
- int hard_success = 0;
- hard_success += RegressionDriver<MGH09, 4>("MGH09.dat");
- hard_success += RegressionDriver<Thurber, 7>("Thurber.dat");
- hard_success += RegressionDriver<BoxBOD, 2>("BoxBOD.dat");
- hard_success += RegressionDriver<Rat42, 3>("Rat42.dat");
- hard_success += RegressionDriver<MGH10, 3>("MGH10.dat");
- hard_success += RegressionDriver<Eckerle4, 3>("Eckerle4.dat");
- hard_success += RegressionDriver<Rat43, 4>("Rat43.dat");
- hard_success += RegressionDriver<Bennet5, 3>("Bennett5.dat");
- std::cout << "\n";
- std::cout << "Easy : " << easy_success << "/16\n";
- std::cout << "Medium : " << medium_success << "/22\n";
- std::cout << "Hard : " << hard_success << "/16\n";
- std::cout << "Total : " << easy_success + medium_success + hard_success
- << "/54\n";
- }
- } // namespace
- } // namespace ceres::examples
- int main(int argc, char** argv) {
- GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
- google::InitGoogleLogging(argv[0]);
- ceres::examples::SolveNISTProblems();
- return 0;
- }
|