123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- //
- // Test problems from the paper
- //
- // Testing Unconstrained Optimization Software
- // Jorge J. More, Burton S. Garbow and Kenneth E. Hillstrom
- // ACM Transactions on Mathematical Software, 7(1), pp. 17-41, 1981
- //
- // A subset of these problems were augmented with bounds and used for
- // testing bounds constrained optimization algorithms by
- //
- // A Trust Region Approach to Linearly Constrained Optimization
- // David M. Gay
- // Numerical Analysis (Griffiths, D.F., ed.), pp. 72-105
- // Lecture Notes in Mathematics 1066, Springer Verlag, 1984.
- //
- // The latter paper is behind a paywall. We obtained the bounds on the
- // variables and the function values at the global minimums from
- //
- // http://www.mat.univie.ac.at/~neum/glopt/bounds.html
- //
- // A problem is considered solved if of the log relative error of its
- // objective function is at least 4.
- #include <cmath>
- #include <iostream> // NOLINT
- #include <sstream> // NOLINT
- #include <string>
- #include "ceres/ceres.h"
- #include "gflags/gflags.h"
- #include "glog/logging.h"
- DEFINE_string(problem, "all", "Which problem to solve");
- DEFINE_bool(use_numeric_diff,
- false,
- "Use numeric differentiation instead of automatic"
- " differentiation.");
- DEFINE_string(numeric_diff_method,
- "ridders",
- "When using numeric differentiation, selects algorithm. Options "
- "are: central, forward, ridders.");
- DEFINE_int32(ridders_extrapolations,
- 3,
- "Maximal number of extrapolations in Ridders' method.");
- namespace ceres::examples {
- const double kDoubleMax = std::numeric_limits<double>::max();
- static void SetNumericDiffOptions(ceres::NumericDiffOptions* options) {
- options->max_num_ridders_extrapolations =
- CERES_GET_FLAG(FLAGS_ridders_extrapolations);
- }
- #define BEGIN_MGH_PROBLEM(name, num_parameters, num_residuals) \
- struct name { \
- static constexpr int kNumParameters = num_parameters; \
- static const double initial_x[kNumParameters]; \
- static const double lower_bounds[kNumParameters]; \
- static const double upper_bounds[kNumParameters]; \
- static const double constrained_optimal_cost; \
- static const double unconstrained_optimal_cost; \
- static CostFunction* Create() { \
- if (CERES_GET_FLAG(FLAGS_use_numeric_diff)) { \
- ceres::NumericDiffOptions options; \
- SetNumericDiffOptions(&options); \
- if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "central") { \
- return new NumericDiffCostFunction<name, \
- ceres::CENTRAL, \
- num_residuals, \
- num_parameters>( \
- new name, ceres::TAKE_OWNERSHIP, num_residuals, options); \
- } else if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "forward") { \
- return new NumericDiffCostFunction<name, \
- ceres::FORWARD, \
- num_residuals, \
- num_parameters>( \
- new name, ceres::TAKE_OWNERSHIP, num_residuals, options); \
- } else if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "ridders") { \
- return new NumericDiffCostFunction<name, \
- ceres::RIDDERS, \
- num_residuals, \
- num_parameters>( \
- new name, ceres::TAKE_OWNERSHIP, num_residuals, options); \
- } else { \
- LOG(ERROR) << "Invalid numeric diff method specified"; \
- return nullptr; \
- } \
- } else { \
- return new AutoDiffCostFunction<name, num_residuals, num_parameters>( \
- new name); \
- } \
- } \
- template <typename T> \
- bool operator()(const T* const x, T* residual) const {
- // clang-format off
- #define END_MGH_PROBLEM return true; } }; // NOLINT
- // Rosenbrock function.
- BEGIN_MGH_PROBLEM(TestProblem1, 2, 2)
- const T x1 = x[0];
- const T x2 = x[1];
- residual[0] = 10.0 * (x2 - x1 * x1);
- residual[1] = 1.0 - x1;
- END_MGH_PROBLEM;
- const double TestProblem1::initial_x[] = {-1.2, 1.0};
- const double TestProblem1::lower_bounds[] = {-kDoubleMax, -kDoubleMax};
- const double TestProblem1::upper_bounds[] = {kDoubleMax, kDoubleMax};
- const double TestProblem1::constrained_optimal_cost =
- std::numeric_limits<double>::quiet_NaN();
- const double TestProblem1::unconstrained_optimal_cost = 0.0;
- // Freudenstein and Roth function.
- BEGIN_MGH_PROBLEM(TestProblem2, 2, 2)
- const T x1 = x[0];
- const T x2 = x[1];
- residual[0] = -13.0 + x1 + ((5.0 - x2) * x2 - 2.0) * x2;
- residual[1] = -29.0 + x1 + ((x2 + 1.0) * x2 - 14.0) * x2;
- END_MGH_PROBLEM;
- const double TestProblem2::initial_x[] = {0.5, -2.0};
- const double TestProblem2::lower_bounds[] = {-kDoubleMax, -kDoubleMax};
- const double TestProblem2::upper_bounds[] = {kDoubleMax, kDoubleMax};
- const double TestProblem2::constrained_optimal_cost =
- std::numeric_limits<double>::quiet_NaN();
- const double TestProblem2::unconstrained_optimal_cost = 0.0;
- // Powell badly scaled function.
- BEGIN_MGH_PROBLEM(TestProblem3, 2, 2)
- const T x1 = x[0];
- const T x2 = x[1];
- residual[0] = 10000.0 * x1 * x2 - 1.0;
- residual[1] = exp(-x1) + exp(-x2) - 1.0001;
- END_MGH_PROBLEM;
- const double TestProblem3::initial_x[] = {0.0, 1.0};
- const double TestProblem3::lower_bounds[] = {0.0, 1.0};
- const double TestProblem3::upper_bounds[] = {1.0, 9.0};
- const double TestProblem3::constrained_optimal_cost = 0.15125900e-9;
- const double TestProblem3::unconstrained_optimal_cost = 0.0;
- // Brown badly scaled function.
- BEGIN_MGH_PROBLEM(TestProblem4, 2, 3)
- const T x1 = x[0];
- const T x2 = x[1];
- residual[0] = x1 - 1000000.0;
- residual[1] = x2 - 0.000002;
- residual[2] = x1 * x2 - 2.0;
- END_MGH_PROBLEM;
- const double TestProblem4::initial_x[] = {1.0, 1.0};
- const double TestProblem4::lower_bounds[] = {0.0, 0.00003};
- const double TestProblem4::upper_bounds[] = {1000000.0, 100.0};
- const double TestProblem4::constrained_optimal_cost = 0.78400000e3;
- const double TestProblem4::unconstrained_optimal_cost = 0.0;
- // Beale function.
- BEGIN_MGH_PROBLEM(TestProblem5, 2, 3)
- const T x1 = x[0];
- const T x2 = x[1];
- residual[0] = 1.5 - x1 * (1.0 - x2);
- residual[1] = 2.25 - x1 * (1.0 - x2 * x2);
- residual[2] = 2.625 - x1 * (1.0 - x2 * x2 * x2);
- END_MGH_PROBLEM;
- const double TestProblem5::initial_x[] = {1.0, 1.0};
- const double TestProblem5::lower_bounds[] = {0.6, 0.5};
- const double TestProblem5::upper_bounds[] = {10.0, 100.0};
- const double TestProblem5::constrained_optimal_cost = 0.0;
- const double TestProblem5::unconstrained_optimal_cost = 0.0;
- // Jennrich and Sampson function.
- BEGIN_MGH_PROBLEM(TestProblem6, 2, 10)
- const T x1 = x[0];
- const T x2 = x[1];
- for (int i = 1; i <= 10; ++i) {
- residual[i - 1] = 2.0 + 2.0 * i -
- (exp(static_cast<double>(i) * x1) +
- exp(static_cast<double>(i) * x2));
- }
- END_MGH_PROBLEM;
- const double TestProblem6::initial_x[] = {1.0, 1.0};
- const double TestProblem6::lower_bounds[] = {-kDoubleMax, -kDoubleMax};
- const double TestProblem6::upper_bounds[] = {kDoubleMax, kDoubleMax};
- const double TestProblem6::constrained_optimal_cost =
- std::numeric_limits<double>::quiet_NaN();
- const double TestProblem6::unconstrained_optimal_cost = 124.362;
- // Helical valley function.
- BEGIN_MGH_PROBLEM(TestProblem7, 3, 3)
- const T x1 = x[0];
- const T x2 = x[1];
- const T x3 = x[2];
- const T theta = (0.5 / constants::pi) * atan(x2 / x1) + (x1 > 0.0 ? 0.0 : 0.5);
- residual[0] = 10.0 * (x3 - 10.0 * theta);
- residual[1] = 10.0 * (sqrt(x1 * x1 + x2 * x2) - 1.0);
- residual[2] = x3;
- END_MGH_PROBLEM;
- const double TestProblem7::initial_x[] = {-1.0, 0.0, 0.0};
- const double TestProblem7::lower_bounds[] = {-100.0, -1.0, -1.0};
- const double TestProblem7::upper_bounds[] = {0.8, 1.0, 1.0};
- const double TestProblem7::constrained_optimal_cost = 0.99042212;
- const double TestProblem7::unconstrained_optimal_cost = 0.0;
- // Bard function
- BEGIN_MGH_PROBLEM(TestProblem8, 3, 15)
- const T x1 = x[0];
- const T x2 = x[1];
- const T x3 = x[2];
- double y[] = {0.14, 0.18, 0.22, 0.25,
- 0.29, 0.32, 0.35, 0.39, 0.37, 0.58,
- 0.73, 0.96, 1.34, 2.10, 4.39};
- for (int i = 1; i <=15; ++i) {
- const double u = i;
- const double v = 16 - i;
- const double w = std::min(i, 16 - i);
- residual[i - 1] = y[i - 1] - (x1 + u / (v * x2 + w * x3));
- }
- END_MGH_PROBLEM;
- const double TestProblem8::initial_x[] = {1.0, 1.0, 1.0};
- const double TestProblem8::lower_bounds[] = {
- -kDoubleMax, -kDoubleMax, -kDoubleMax};
- const double TestProblem8::upper_bounds[] = {
- kDoubleMax, kDoubleMax, kDoubleMax};
- const double TestProblem8::constrained_optimal_cost =
- std::numeric_limits<double>::quiet_NaN();
- const double TestProblem8::unconstrained_optimal_cost = 8.21487e-3;
- // Gaussian function.
- BEGIN_MGH_PROBLEM(TestProblem9, 3, 15)
- const T x1 = x[0];
- const T x2 = x[1];
- const T x3 = x[2];
- const double y[] = {0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521,
- 0.3989,
- 0.3521, 0.2420, 0.1295, 0.0540, 0.0175, 0.0044, 0.0009};
- for (int i = 0; i < 15; ++i) {
- const double t_i = (8.0 - i - 1.0) / 2.0;
- residual[i] = x1 * exp(-x2 * (t_i - x3) * (t_i - x3) / 2.0) - y[i];
- }
- END_MGH_PROBLEM;
- const double TestProblem9::initial_x[] = {0.4, 1.0, 0.0};
- const double TestProblem9::lower_bounds[] = {0.398, 1.0, -0.5};
- const double TestProblem9::upper_bounds[] = {4.2, 2.0, 0.1};
- const double TestProblem9::constrained_optimal_cost = 0.11279300e-7;
- const double TestProblem9::unconstrained_optimal_cost = 0.112793e-7;
- // Meyer function.
- BEGIN_MGH_PROBLEM(TestProblem10, 3, 16)
- const T x1 = x[0];
- const T x2 = x[1];
- const T x3 = x[2];
- const double y[] = {34780, 28610, 23650, 19630, 16370, 13720, 11540, 9744,
- 8261, 7030, 6005, 5147, 4427, 3820, 3307, 2872};
- for (int i = 0; i < 16; ++i) {
- const double ti = 45.0 + 5.0 * (i + 1);
- residual[i] = x1 * exp(x2 / (ti + x3)) - y[i];
- }
- END_MGH_PROBLEM
- const double TestProblem10::initial_x[] = {0.02, 4000, 250};
- const double TestProblem10::lower_bounds[] = {
- -kDoubleMax, -kDoubleMax, -kDoubleMax};
- const double TestProblem10::upper_bounds[] = {
- kDoubleMax, kDoubleMax, kDoubleMax};
- const double TestProblem10::constrained_optimal_cost =
- std::numeric_limits<double>::quiet_NaN();
- const double TestProblem10::unconstrained_optimal_cost = 87.9458;
- // Gulf research and development function
- BEGIN_MGH_PROBLEM(TestProblem11, 3, 100)
- const T x1 = x[0];
- const T x2 = x[1];
- const T x3 = x[2];
- for (int i = 1; i <= 100; ++i) {
- const double ti = i / 100.0;
- const double yi = 25.0 + pow(-50.0 * log(ti), 2.0 / 3.0);
- residual[i - 1] = exp(-pow(abs((yi * 100.0 * i) * x2), x3) / x1) - ti;
- }
- END_MGH_PROBLEM
- const double TestProblem11::initial_x[] = {5.0, 2.5, 0.15};
- const double TestProblem11::lower_bounds[] = {1e-16, 0.0, 0.0};
- const double TestProblem11::upper_bounds[] = {10.0, 10.0, 10.0};
- const double TestProblem11::constrained_optimal_cost = 0.58281431e-4;
- const double TestProblem11::unconstrained_optimal_cost = 0.0;
- // Box three-dimensional function.
- BEGIN_MGH_PROBLEM(TestProblem12, 3, 3)
- const T x1 = x[0];
- const T x2 = x[1];
- const T x3 = x[2];
- const double t1 = 0.1;
- const double t2 = 0.2;
- const double t3 = 0.3;
- residual[0] = exp(-t1 * x1) - exp(-t1 * x2) - x3 * (exp(-t1) - exp(-10.0 * t1));
- residual[1] = exp(-t2 * x1) - exp(-t2 * x2) - x3 * (exp(-t2) - exp(-10.0 * t2));
- residual[2] = exp(-t3 * x1) - exp(-t3 * x2) - x3 * (exp(-t3) - exp(-10.0 * t3));
- END_MGH_PROBLEM
- const double TestProblem12::initial_x[] = {0.0, 10.0, 20.0};
- const double TestProblem12::lower_bounds[] = {0.0, 5.0, 0.0};
- const double TestProblem12::upper_bounds[] = {2.0, 9.5, 20.0};
- const double TestProblem12::constrained_optimal_cost = 0.30998153e-5;
- const double TestProblem12::unconstrained_optimal_cost = 0.0;
- // Powell Singular function.
- BEGIN_MGH_PROBLEM(TestProblem13, 4, 4)
- const T x1 = x[0];
- const T x2 = x[1];
- const T x3 = x[2];
- const T x4 = x[3];
- residual[0] = x1 + 10.0 * x2;
- residual[1] = sqrt(5.0) * (x3 - x4);
- residual[2] = (x2 - 2.0 * x3) * (x2 - 2.0 * x3);
- residual[3] = sqrt(10.0) * (x1 - x4) * (x1 - x4);
- END_MGH_PROBLEM
- const double TestProblem13::initial_x[] = {3.0, -1.0, 0.0, 1.0};
- const double TestProblem13::lower_bounds[] = {
- -kDoubleMax, -kDoubleMax, -kDoubleMax};
- const double TestProblem13::upper_bounds[] = {
- kDoubleMax, kDoubleMax, kDoubleMax};
- const double TestProblem13::constrained_optimal_cost =
- std::numeric_limits<double>::quiet_NaN();
- const double TestProblem13::unconstrained_optimal_cost = 0.0;
- // Wood function.
- BEGIN_MGH_PROBLEM(TestProblem14, 4, 6)
- const T x1 = x[0];
- const T x2 = x[1];
- const T x3 = x[2];
- const T x4 = x[3];
- residual[0] = 10.0 * (x2 - x1 * x1);
- residual[1] = 1.0 - x1;
- residual[2] = sqrt(90.0) * (x4 - x3 * x3);
- residual[3] = 1.0 - x3;
- residual[4] = sqrt(10.0) * (x2 + x4 - 2.0);
- residual[5] = 1.0 / sqrt(10.0) * (x2 - x4);
- END_MGH_PROBLEM;
- const double TestProblem14::initial_x[] = {-3.0, -1.0, -3.0, -1.0};
- const double TestProblem14::lower_bounds[] = {-100.0, -100.0, -100.0, -100.0};
- const double TestProblem14::upper_bounds[] = {0.0, 10.0, 100.0, 100.0};
- const double TestProblem14::constrained_optimal_cost = 0.15567008e1;
- const double TestProblem14::unconstrained_optimal_cost = 0.0;
- // Kowalik and Osborne function.
- BEGIN_MGH_PROBLEM(TestProblem15, 4, 11)
- const T x1 = x[0];
- const T x2 = x[1];
- const T x3 = x[2];
- const T x4 = x[3];
- const double y[] = {0.1957, 0.1947, 0.1735, 0.1600, 0.0844, 0.0627,
- 0.0456, 0.0342, 0.0323, 0.0235, 0.0246};
- const double u[] = {4.0, 2.0, 1.0, 0.5, 0.25, 0.167, 0.125, 0.1,
- 0.0833, 0.0714, 0.0625};
- for (int i = 0; i < 11; ++i) {
- residual[i] = y[i] - x1 * (u[i] * u[i] + u[i] * x2) /
- (u[i] * u[i] + u[i] * x3 + x4);
- }
- END_MGH_PROBLEM;
- const double TestProblem15::initial_x[] = {0.25, 0.39, 0.415, 0.39};
- const double TestProblem15::lower_bounds[] = {
- -kDoubleMax, -kDoubleMax, -kDoubleMax, -kDoubleMax};
- const double TestProblem15::upper_bounds[] = {
- kDoubleMax, kDoubleMax, kDoubleMax, kDoubleMax};
- const double TestProblem15::constrained_optimal_cost =
- std::numeric_limits<double>::quiet_NaN();
- const double TestProblem15::unconstrained_optimal_cost = 3.07505e-4;
- // Brown and Dennis function.
- BEGIN_MGH_PROBLEM(TestProblem16, 4, 20)
- const T x1 = x[0];
- const T x2 = x[1];
- const T x3 = x[2];
- const T x4 = x[3];
- for (int i = 0; i < 20; ++i) {
- const double ti = (i + 1) / 5.0;
- residual[i] = (x1 + ti * x2 - exp(ti)) * (x1 + ti * x2 - exp(ti)) +
- (x3 + x4 * sin(ti) - cos(ti)) * (x3 + x4 * sin(ti) - cos(ti));
- }
- END_MGH_PROBLEM;
- const double TestProblem16::initial_x[] = {25.0, 5.0, -5.0, -1.0};
- const double TestProblem16::lower_bounds[] = {-10.0, 0.0, -100.0, -20.0};
- const double TestProblem16::upper_bounds[] = {100.0, 15.0, 0.0, 0.2};
- const double TestProblem16::constrained_optimal_cost = 0.88860479e5;
- const double TestProblem16::unconstrained_optimal_cost = 85822.2;
- // Osborne 1 function.
- BEGIN_MGH_PROBLEM(TestProblem17, 5, 33)
- const T x1 = x[0];
- const T x2 = x[1];
- const T x3 = x[2];
- const T x4 = x[3];
- const T x5 = x[4];
- const double y[] = {0.844, 0.908, 0.932, 0.936, 0.925, 0.908, 0.881, 0.850, 0.818,
- 0.784, 0.751, 0.718, 0.685, 0.658, 0.628, 0.603, 0.580, 0.558,
- 0.538, 0.522, 0.506, 0.490, 0.478, 0.467, 0.457, 0.448, 0.438,
- 0.431, 0.424, 0.420, 0.414, 0.411, 0.406};
- for (int i = 0; i < 33; ++i) {
- const double ti = 10.0 * i;
- residual[i] = y[i] - (x1 + x2 * exp(-ti * x4) + x3 * exp(-ti * x5));
- }
- END_MGH_PROBLEM;
- const double TestProblem17::initial_x[] = {0.5, 1.5, -1.0, 0.01, 0.02};
- const double TestProblem17::lower_bounds[] = {
- -kDoubleMax, -kDoubleMax, -kDoubleMax, -kDoubleMax};
- const double TestProblem17::upper_bounds[] = {
- kDoubleMax, kDoubleMax, kDoubleMax, kDoubleMax};
- const double TestProblem17::constrained_optimal_cost =
- std::numeric_limits<double>::quiet_NaN();
- const double TestProblem17::unconstrained_optimal_cost = 5.46489e-5;
- // Biggs EXP6 function.
- BEGIN_MGH_PROBLEM(TestProblem18, 6, 13)
- const T x1 = x[0];
- const T x2 = x[1];
- const T x3 = x[2];
- const T x4 = x[3];
- const T x5 = x[4];
- const T x6 = x[5];
- for (int i = 0; i < 13; ++i) {
- const double ti = 0.1 * (i + 1.0);
- const double yi = exp(-ti) - 5.0 * exp(-10.0 * ti) + 3.0 * exp(-4.0 * ti);
- residual[i] =
- x3 * exp(-ti * x1) - x4 * exp(-ti * x2) + x6 * exp(-ti * x5) - yi;
- }
- END_MGH_PROBLEM
- const double TestProblem18::initial_x[] = {1.0, 2.0, 1.0, 1.0, 1.0, 1.0};
- const double TestProblem18::lower_bounds[] = {0.0, 0.0, 0.0, 1.0, 0.0, 0.0};
- const double TestProblem18::upper_bounds[] = {2.0, 8.0, 1.0, 7.0, 5.0, 5.0};
- const double TestProblem18::constrained_optimal_cost = 0.53209865e-3;
- const double TestProblem18::unconstrained_optimal_cost = 0.0;
- // Osborne 2 function.
- BEGIN_MGH_PROBLEM(TestProblem19, 11, 65)
- const T x1 = x[0];
- const T x2 = x[1];
- const T x3 = x[2];
- const T x4 = x[3];
- const T x5 = x[4];
- const T x6 = x[5];
- const T x7 = x[6];
- const T x8 = x[7];
- const T x9 = x[8];
- const T x10 = x[9];
- const T x11 = x[10];
- const double y[] = {1.366, 1.191, 1.112, 1.013, 0.991,
- 0.885, 0.831, 0.847, 0.786, 0.725,
- 0.746, 0.679, 0.608, 0.655, 0.616,
- 0.606, 0.602, 0.626, 0.651, 0.724,
- 0.649, 0.649, 0.694, 0.644, 0.624,
- 0.661, 0.612, 0.558, 0.533, 0.495,
- 0.500, 0.423, 0.395, 0.375, 0.372,
- 0.391, 0.396, 0.405, 0.428, 0.429,
- 0.523, 0.562, 0.607, 0.653, 0.672,
- 0.708, 0.633, 0.668, 0.645, 0.632,
- 0.591, 0.559, 0.597, 0.625, 0.739,
- 0.710, 0.729, 0.720, 0.636, 0.581,
- 0.428, 0.292, 0.162, 0.098, 0.054};
- for (int i = 0; i < 65; ++i) {
- const double ti = i / 10.0;
- residual[i] = y[i] - (x1 * exp(-(ti * x5)) +
- x2 * exp(-(ti - x9) * (ti - x9) * x6) +
- x3 * exp(-(ti - x10) * (ti - x10) * x7) +
- x4 * exp(-(ti - x11) * (ti - x11) * x8));
- }
- END_MGH_PROBLEM;
- const double TestProblem19::initial_x[] = {1.3, 0.65, 0.65, 0.7, 0.6,
- 3.0, 5.0, 7.0, 2.0, 4.5, 5.5};
- const double TestProblem19::lower_bounds[] = {
- -kDoubleMax, -kDoubleMax, -kDoubleMax, -kDoubleMax};
- const double TestProblem19::upper_bounds[] = {
- kDoubleMax, kDoubleMax, kDoubleMax, kDoubleMax};
- const double TestProblem19::constrained_optimal_cost =
- std::numeric_limits<double>::quiet_NaN();
- const double TestProblem19::unconstrained_optimal_cost = 4.01377e-2;
- #undef BEGIN_MGH_PROBLEM
- #undef END_MGH_PROBLEM
- // clang-format on
- template <typename TestProblem>
- bool Solve(bool is_constrained, int trial) {
- double x[TestProblem::kNumParameters];
- for (int i = 0; i < TestProblem::kNumParameters; ++i) {
- x[i] = pow(10, trial) * TestProblem::initial_x[i];
- }
- Problem problem;
- problem.AddResidualBlock(TestProblem::Create(), nullptr, x);
- double optimal_cost = TestProblem::unconstrained_optimal_cost;
- if (is_constrained) {
- for (int i = 0; i < TestProblem::kNumParameters; ++i) {
- problem.SetParameterLowerBound(x, i, TestProblem::lower_bounds[i]);
- problem.SetParameterUpperBound(x, i, TestProblem::upper_bounds[i]);
- }
- optimal_cost = TestProblem::constrained_optimal_cost;
- }
- Solver::Options options;
- options.parameter_tolerance = 1e-18;
- options.function_tolerance = 1e-18;
- options.gradient_tolerance = 1e-18;
- options.max_num_iterations = 1000;
- options.linear_solver_type = DENSE_QR;
- Solver::Summary summary;
- Solve(options, &problem, &summary);
- const double kMinLogRelativeError = 4.0;
- const double log_relative_error =
- -std::log10(std::abs(2.0 * summary.final_cost - optimal_cost) /
- (optimal_cost > 0.0 ? optimal_cost : 1.0));
- const bool success = log_relative_error >= kMinLogRelativeError;
- LOG(INFO) << "Expected : " << optimal_cost
- << " actual: " << 2.0 * summary.final_cost << " " << success
- << " in " << summary.total_time_in_seconds << " seconds";
- return success;
- }
- } // namespace ceres::examples
- int main(int argc, char** argv) {
- GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
- google::InitGoogleLogging(argv[0]);
- using ceres::examples::Solve;
- int unconstrained_problems = 0;
- int unconstrained_successes = 0;
- int constrained_problems = 0;
- int constrained_successes = 0;
- std::stringstream ss;
- #define UNCONSTRAINED_SOLVE(n) \
- ss << "Unconstrained Problem " << n << " : "; \
- if (CERES_GET_FLAG(FLAGS_problem) == #n || \
- CERES_GET_FLAG(FLAGS_problem) == "all") { \
- unconstrained_problems += 3; \
- if (Solve<ceres::examples::TestProblem##n>(false, 0)) { \
- unconstrained_successes += 1; \
- ss << "Yes "; \
- } else { \
- ss << "No "; \
- } \
- if (Solve<ceres::examples::TestProblem##n>(false, 1)) { \
- unconstrained_successes += 1; \
- ss << "Yes "; \
- } else { \
- ss << "No "; \
- } \
- if (Solve<ceres::examples::TestProblem##n>(false, 2)) { \
- unconstrained_successes += 1; \
- ss << "Yes "; \
- } else { \
- ss << "No "; \
- } \
- } \
- ss << std::endl;
- UNCONSTRAINED_SOLVE(1);
- UNCONSTRAINED_SOLVE(2);
- UNCONSTRAINED_SOLVE(3);
- UNCONSTRAINED_SOLVE(4);
- UNCONSTRAINED_SOLVE(5);
- UNCONSTRAINED_SOLVE(6);
- UNCONSTRAINED_SOLVE(7);
- UNCONSTRAINED_SOLVE(8);
- UNCONSTRAINED_SOLVE(9);
- UNCONSTRAINED_SOLVE(10);
- UNCONSTRAINED_SOLVE(11);
- UNCONSTRAINED_SOLVE(12);
- UNCONSTRAINED_SOLVE(13);
- UNCONSTRAINED_SOLVE(14);
- UNCONSTRAINED_SOLVE(15);
- UNCONSTRAINED_SOLVE(16);
- UNCONSTRAINED_SOLVE(17);
- UNCONSTRAINED_SOLVE(18);
- UNCONSTRAINED_SOLVE(19);
- ss << "Unconstrained : " << unconstrained_successes << "/"
- << unconstrained_problems << std::endl;
- #define CONSTRAINED_SOLVE(n) \
- ss << "Constrained Problem " << n << " : "; \
- if (CERES_GET_FLAG(FLAGS_problem) == #n || \
- CERES_GET_FLAG(FLAGS_problem) == "all") { \
- constrained_problems += 1; \
- if (Solve<ceres::examples::TestProblem##n>(true, 0)) { \
- constrained_successes += 1; \
- ss << "Yes "; \
- } else { \
- ss << "No "; \
- } \
- } \
- ss << std::endl;
- CONSTRAINED_SOLVE(3);
- CONSTRAINED_SOLVE(4);
- CONSTRAINED_SOLVE(5);
- CONSTRAINED_SOLVE(7);
- CONSTRAINED_SOLVE(9);
- CONSTRAINED_SOLVE(11);
- CONSTRAINED_SOLVE(12);
- CONSTRAINED_SOLVE(14);
- CONSTRAINED_SOLVE(16);
- CONSTRAINED_SOLVE(18);
- ss << "Constrained : " << constrained_successes << "/" << constrained_problems
- << std::endl;
- std::cout << ss.str();
- return 0;
- }
|