more_garbow_hillstrom.cc 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674
  1. // Ceres Solver - A fast non-linear least squares minimizer
  2. // Copyright 2023 Google Inc. All rights reserved.
  3. // http://ceres-solver.org/
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are met:
  7. //
  8. // * Redistributions of source code must retain the above copyright notice,
  9. // this list of conditions and the following disclaimer.
  10. // * Redistributions in binary form must reproduce the above copyright notice,
  11. // this list of conditions and the following disclaimer in the documentation
  12. // and/or other materials provided with the distribution.
  13. // * Neither the name of Google Inc. nor the names of its contributors may be
  14. // used to endorse or promote products derived from this software without
  15. // specific prior written permission.
  16. //
  17. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  18. // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  19. // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  20. // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  21. // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  22. // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  23. // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  24. // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  25. // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  26. // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  27. // POSSIBILITY OF SUCH DAMAGE.
  28. //
  29. // Author: sameeragarwal@google.com (Sameer Agarwal)
  30. //
  31. // Test problems from the paper
  32. //
  33. // Testing Unconstrained Optimization Software
  34. // Jorge J. More, Burton S. Garbow and Kenneth E. Hillstrom
  35. // ACM Transactions on Mathematical Software, 7(1), pp. 17-41, 1981
  36. //
  37. // A subset of these problems were augmented with bounds and used for
  38. // testing bounds constrained optimization algorithms by
  39. //
  40. // A Trust Region Approach to Linearly Constrained Optimization
  41. // David M. Gay
  42. // Numerical Analysis (Griffiths, D.F., ed.), pp. 72-105
  43. // Lecture Notes in Mathematics 1066, Springer Verlag, 1984.
  44. //
  45. // The latter paper is behind a paywall. We obtained the bounds on the
  46. // variables and the function values at the global minimums from
  47. //
  48. // http://www.mat.univie.ac.at/~neum/glopt/bounds.html
  49. //
  50. // A problem is considered solved if of the log relative error of its
  51. // objective function is at least 4.
  52. #include <cmath>
  53. #include <iostream> // NOLINT
  54. #include <sstream> // NOLINT
  55. #include <string>
  56. #include "ceres/ceres.h"
  57. #include "gflags/gflags.h"
  58. #include "glog/logging.h"
  59. DEFINE_string(problem, "all", "Which problem to solve");
  60. DEFINE_bool(use_numeric_diff,
  61. false,
  62. "Use numeric differentiation instead of automatic"
  63. " differentiation.");
  64. DEFINE_string(numeric_diff_method,
  65. "ridders",
  66. "When using numeric differentiation, selects algorithm. Options "
  67. "are: central, forward, ridders.");
  68. DEFINE_int32(ridders_extrapolations,
  69. 3,
  70. "Maximal number of extrapolations in Ridders' method.");
  71. namespace ceres::examples {
  72. const double kDoubleMax = std::numeric_limits<double>::max();
  73. static void SetNumericDiffOptions(ceres::NumericDiffOptions* options) {
  74. options->max_num_ridders_extrapolations =
  75. CERES_GET_FLAG(FLAGS_ridders_extrapolations);
  76. }
  77. #define BEGIN_MGH_PROBLEM(name, num_parameters, num_residuals) \
  78. struct name { \
  79. static constexpr int kNumParameters = num_parameters; \
  80. static const double initial_x[kNumParameters]; \
  81. static const double lower_bounds[kNumParameters]; \
  82. static const double upper_bounds[kNumParameters]; \
  83. static const double constrained_optimal_cost; \
  84. static const double unconstrained_optimal_cost; \
  85. static CostFunction* Create() { \
  86. if (CERES_GET_FLAG(FLAGS_use_numeric_diff)) { \
  87. ceres::NumericDiffOptions options; \
  88. SetNumericDiffOptions(&options); \
  89. if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "central") { \
  90. return new NumericDiffCostFunction<name, \
  91. ceres::CENTRAL, \
  92. num_residuals, \
  93. num_parameters>( \
  94. new name, ceres::TAKE_OWNERSHIP, num_residuals, options); \
  95. } else if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "forward") { \
  96. return new NumericDiffCostFunction<name, \
  97. ceres::FORWARD, \
  98. num_residuals, \
  99. num_parameters>( \
  100. new name, ceres::TAKE_OWNERSHIP, num_residuals, options); \
  101. } else if (CERES_GET_FLAG(FLAGS_numeric_diff_method) == "ridders") { \
  102. return new NumericDiffCostFunction<name, \
  103. ceres::RIDDERS, \
  104. num_residuals, \
  105. num_parameters>( \
  106. new name, ceres::TAKE_OWNERSHIP, num_residuals, options); \
  107. } else { \
  108. LOG(ERROR) << "Invalid numeric diff method specified"; \
  109. return nullptr; \
  110. } \
  111. } else { \
  112. return new AutoDiffCostFunction<name, num_residuals, num_parameters>( \
  113. new name); \
  114. } \
  115. } \
  116. template <typename T> \
  117. bool operator()(const T* const x, T* residual) const {
  118. // clang-format off
  119. #define END_MGH_PROBLEM return true; } }; // NOLINT
  120. // Rosenbrock function.
  121. BEGIN_MGH_PROBLEM(TestProblem1, 2, 2)
  122. const T x1 = x[0];
  123. const T x2 = x[1];
  124. residual[0] = 10.0 * (x2 - x1 * x1);
  125. residual[1] = 1.0 - x1;
  126. END_MGH_PROBLEM;
  127. const double TestProblem1::initial_x[] = {-1.2, 1.0};
  128. const double TestProblem1::lower_bounds[] = {-kDoubleMax, -kDoubleMax};
  129. const double TestProblem1::upper_bounds[] = {kDoubleMax, kDoubleMax};
  130. const double TestProblem1::constrained_optimal_cost =
  131. std::numeric_limits<double>::quiet_NaN();
  132. const double TestProblem1::unconstrained_optimal_cost = 0.0;
  133. // Freudenstein and Roth function.
  134. BEGIN_MGH_PROBLEM(TestProblem2, 2, 2)
  135. const T x1 = x[0];
  136. const T x2 = x[1];
  137. residual[0] = -13.0 + x1 + ((5.0 - x2) * x2 - 2.0) * x2;
  138. residual[1] = -29.0 + x1 + ((x2 + 1.0) * x2 - 14.0) * x2;
  139. END_MGH_PROBLEM;
  140. const double TestProblem2::initial_x[] = {0.5, -2.0};
  141. const double TestProblem2::lower_bounds[] = {-kDoubleMax, -kDoubleMax};
  142. const double TestProblem2::upper_bounds[] = {kDoubleMax, kDoubleMax};
  143. const double TestProblem2::constrained_optimal_cost =
  144. std::numeric_limits<double>::quiet_NaN();
  145. const double TestProblem2::unconstrained_optimal_cost = 0.0;
  146. // Powell badly scaled function.
  147. BEGIN_MGH_PROBLEM(TestProblem3, 2, 2)
  148. const T x1 = x[0];
  149. const T x2 = x[1];
  150. residual[0] = 10000.0 * x1 * x2 - 1.0;
  151. residual[1] = exp(-x1) + exp(-x2) - 1.0001;
  152. END_MGH_PROBLEM;
  153. const double TestProblem3::initial_x[] = {0.0, 1.0};
  154. const double TestProblem3::lower_bounds[] = {0.0, 1.0};
  155. const double TestProblem3::upper_bounds[] = {1.0, 9.0};
  156. const double TestProblem3::constrained_optimal_cost = 0.15125900e-9;
  157. const double TestProblem3::unconstrained_optimal_cost = 0.0;
  158. // Brown badly scaled function.
  159. BEGIN_MGH_PROBLEM(TestProblem4, 2, 3)
  160. const T x1 = x[0];
  161. const T x2 = x[1];
  162. residual[0] = x1 - 1000000.0;
  163. residual[1] = x2 - 0.000002;
  164. residual[2] = x1 * x2 - 2.0;
  165. END_MGH_PROBLEM;
  166. const double TestProblem4::initial_x[] = {1.0, 1.0};
  167. const double TestProblem4::lower_bounds[] = {0.0, 0.00003};
  168. const double TestProblem4::upper_bounds[] = {1000000.0, 100.0};
  169. const double TestProblem4::constrained_optimal_cost = 0.78400000e3;
  170. const double TestProblem4::unconstrained_optimal_cost = 0.0;
  171. // Beale function.
  172. BEGIN_MGH_PROBLEM(TestProblem5, 2, 3)
  173. const T x1 = x[0];
  174. const T x2 = x[1];
  175. residual[0] = 1.5 - x1 * (1.0 - x2);
  176. residual[1] = 2.25 - x1 * (1.0 - x2 * x2);
  177. residual[2] = 2.625 - x1 * (1.0 - x2 * x2 * x2);
  178. END_MGH_PROBLEM;
  179. const double TestProblem5::initial_x[] = {1.0, 1.0};
  180. const double TestProblem5::lower_bounds[] = {0.6, 0.5};
  181. const double TestProblem5::upper_bounds[] = {10.0, 100.0};
  182. const double TestProblem5::constrained_optimal_cost = 0.0;
  183. const double TestProblem5::unconstrained_optimal_cost = 0.0;
  184. // Jennrich and Sampson function.
  185. BEGIN_MGH_PROBLEM(TestProblem6, 2, 10)
  186. const T x1 = x[0];
  187. const T x2 = x[1];
  188. for (int i = 1; i <= 10; ++i) {
  189. residual[i - 1] = 2.0 + 2.0 * i -
  190. (exp(static_cast<double>(i) * x1) +
  191. exp(static_cast<double>(i) * x2));
  192. }
  193. END_MGH_PROBLEM;
  194. const double TestProblem6::initial_x[] = {1.0, 1.0};
  195. const double TestProblem6::lower_bounds[] = {-kDoubleMax, -kDoubleMax};
  196. const double TestProblem6::upper_bounds[] = {kDoubleMax, kDoubleMax};
  197. const double TestProblem6::constrained_optimal_cost =
  198. std::numeric_limits<double>::quiet_NaN();
  199. const double TestProblem6::unconstrained_optimal_cost = 124.362;
  200. // Helical valley function.
  201. BEGIN_MGH_PROBLEM(TestProblem7, 3, 3)
  202. const T x1 = x[0];
  203. const T x2 = x[1];
  204. const T x3 = x[2];
  205. const T theta = (0.5 / constants::pi) * atan(x2 / x1) + (x1 > 0.0 ? 0.0 : 0.5);
  206. residual[0] = 10.0 * (x3 - 10.0 * theta);
  207. residual[1] = 10.0 * (sqrt(x1 * x1 + x2 * x2) - 1.0);
  208. residual[2] = x3;
  209. END_MGH_PROBLEM;
  210. const double TestProblem7::initial_x[] = {-1.0, 0.0, 0.0};
  211. const double TestProblem7::lower_bounds[] = {-100.0, -1.0, -1.0};
  212. const double TestProblem7::upper_bounds[] = {0.8, 1.0, 1.0};
  213. const double TestProblem7::constrained_optimal_cost = 0.99042212;
  214. const double TestProblem7::unconstrained_optimal_cost = 0.0;
  215. // Bard function
  216. BEGIN_MGH_PROBLEM(TestProblem8, 3, 15)
  217. const T x1 = x[0];
  218. const T x2 = x[1];
  219. const T x3 = x[2];
  220. double y[] = {0.14, 0.18, 0.22, 0.25,
  221. 0.29, 0.32, 0.35, 0.39, 0.37, 0.58,
  222. 0.73, 0.96, 1.34, 2.10, 4.39};
  223. for (int i = 1; i <=15; ++i) {
  224. const double u = i;
  225. const double v = 16 - i;
  226. const double w = std::min(i, 16 - i);
  227. residual[i - 1] = y[i - 1] - (x1 + u / (v * x2 + w * x3));
  228. }
  229. END_MGH_PROBLEM;
  230. const double TestProblem8::initial_x[] = {1.0, 1.0, 1.0};
  231. const double TestProblem8::lower_bounds[] = {
  232. -kDoubleMax, -kDoubleMax, -kDoubleMax};
  233. const double TestProblem8::upper_bounds[] = {
  234. kDoubleMax, kDoubleMax, kDoubleMax};
  235. const double TestProblem8::constrained_optimal_cost =
  236. std::numeric_limits<double>::quiet_NaN();
  237. const double TestProblem8::unconstrained_optimal_cost = 8.21487e-3;
  238. // Gaussian function.
  239. BEGIN_MGH_PROBLEM(TestProblem9, 3, 15)
  240. const T x1 = x[0];
  241. const T x2 = x[1];
  242. const T x3 = x[2];
  243. const double y[] = {0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521,
  244. 0.3989,
  245. 0.3521, 0.2420, 0.1295, 0.0540, 0.0175, 0.0044, 0.0009};
  246. for (int i = 0; i < 15; ++i) {
  247. const double t_i = (8.0 - i - 1.0) / 2.0;
  248. residual[i] = x1 * exp(-x2 * (t_i - x3) * (t_i - x3) / 2.0) - y[i];
  249. }
  250. END_MGH_PROBLEM;
  251. const double TestProblem9::initial_x[] = {0.4, 1.0, 0.0};
  252. const double TestProblem9::lower_bounds[] = {0.398, 1.0, -0.5};
  253. const double TestProblem9::upper_bounds[] = {4.2, 2.0, 0.1};
  254. const double TestProblem9::constrained_optimal_cost = 0.11279300e-7;
  255. const double TestProblem9::unconstrained_optimal_cost = 0.112793e-7;
  256. // Meyer function.
  257. BEGIN_MGH_PROBLEM(TestProblem10, 3, 16)
  258. const T x1 = x[0];
  259. const T x2 = x[1];
  260. const T x3 = x[2];
  261. const double y[] = {34780, 28610, 23650, 19630, 16370, 13720, 11540, 9744,
  262. 8261, 7030, 6005, 5147, 4427, 3820, 3307, 2872};
  263. for (int i = 0; i < 16; ++i) {
  264. const double ti = 45.0 + 5.0 * (i + 1);
  265. residual[i] = x1 * exp(x2 / (ti + x3)) - y[i];
  266. }
  267. END_MGH_PROBLEM
  268. const double TestProblem10::initial_x[] = {0.02, 4000, 250};
  269. const double TestProblem10::lower_bounds[] = {
  270. -kDoubleMax, -kDoubleMax, -kDoubleMax};
  271. const double TestProblem10::upper_bounds[] = {
  272. kDoubleMax, kDoubleMax, kDoubleMax};
  273. const double TestProblem10::constrained_optimal_cost =
  274. std::numeric_limits<double>::quiet_NaN();
  275. const double TestProblem10::unconstrained_optimal_cost = 87.9458;
  276. // Gulf research and development function
  277. BEGIN_MGH_PROBLEM(TestProblem11, 3, 100)
  278. const T x1 = x[0];
  279. const T x2 = x[1];
  280. const T x3 = x[2];
  281. for (int i = 1; i <= 100; ++i) {
  282. const double ti = i / 100.0;
  283. const double yi = 25.0 + pow(-50.0 * log(ti), 2.0 / 3.0);
  284. residual[i - 1] = exp(-pow(abs((yi * 100.0 * i) * x2), x3) / x1) - ti;
  285. }
  286. END_MGH_PROBLEM
  287. const double TestProblem11::initial_x[] = {5.0, 2.5, 0.15};
  288. const double TestProblem11::lower_bounds[] = {1e-16, 0.0, 0.0};
  289. const double TestProblem11::upper_bounds[] = {10.0, 10.0, 10.0};
  290. const double TestProblem11::constrained_optimal_cost = 0.58281431e-4;
  291. const double TestProblem11::unconstrained_optimal_cost = 0.0;
  292. // Box three-dimensional function.
  293. BEGIN_MGH_PROBLEM(TestProblem12, 3, 3)
  294. const T x1 = x[0];
  295. const T x2 = x[1];
  296. const T x3 = x[2];
  297. const double t1 = 0.1;
  298. const double t2 = 0.2;
  299. const double t3 = 0.3;
  300. residual[0] = exp(-t1 * x1) - exp(-t1 * x2) - x3 * (exp(-t1) - exp(-10.0 * t1));
  301. residual[1] = exp(-t2 * x1) - exp(-t2 * x2) - x3 * (exp(-t2) - exp(-10.0 * t2));
  302. residual[2] = exp(-t3 * x1) - exp(-t3 * x2) - x3 * (exp(-t3) - exp(-10.0 * t3));
  303. END_MGH_PROBLEM
  304. const double TestProblem12::initial_x[] = {0.0, 10.0, 20.0};
  305. const double TestProblem12::lower_bounds[] = {0.0, 5.0, 0.0};
  306. const double TestProblem12::upper_bounds[] = {2.0, 9.5, 20.0};
  307. const double TestProblem12::constrained_optimal_cost = 0.30998153e-5;
  308. const double TestProblem12::unconstrained_optimal_cost = 0.0;
  309. // Powell Singular function.
  310. BEGIN_MGH_PROBLEM(TestProblem13, 4, 4)
  311. const T x1 = x[0];
  312. const T x2 = x[1];
  313. const T x3 = x[2];
  314. const T x4 = x[3];
  315. residual[0] = x1 + 10.0 * x2;
  316. residual[1] = sqrt(5.0) * (x3 - x4);
  317. residual[2] = (x2 - 2.0 * x3) * (x2 - 2.0 * x3);
  318. residual[3] = sqrt(10.0) * (x1 - x4) * (x1 - x4);
  319. END_MGH_PROBLEM
  320. const double TestProblem13::initial_x[] = {3.0, -1.0, 0.0, 1.0};
  321. const double TestProblem13::lower_bounds[] = {
  322. -kDoubleMax, -kDoubleMax, -kDoubleMax};
  323. const double TestProblem13::upper_bounds[] = {
  324. kDoubleMax, kDoubleMax, kDoubleMax};
  325. const double TestProblem13::constrained_optimal_cost =
  326. std::numeric_limits<double>::quiet_NaN();
  327. const double TestProblem13::unconstrained_optimal_cost = 0.0;
  328. // Wood function.
  329. BEGIN_MGH_PROBLEM(TestProblem14, 4, 6)
  330. const T x1 = x[0];
  331. const T x2 = x[1];
  332. const T x3 = x[2];
  333. const T x4 = x[3];
  334. residual[0] = 10.0 * (x2 - x1 * x1);
  335. residual[1] = 1.0 - x1;
  336. residual[2] = sqrt(90.0) * (x4 - x3 * x3);
  337. residual[3] = 1.0 - x3;
  338. residual[4] = sqrt(10.0) * (x2 + x4 - 2.0);
  339. residual[5] = 1.0 / sqrt(10.0) * (x2 - x4);
  340. END_MGH_PROBLEM;
  341. const double TestProblem14::initial_x[] = {-3.0, -1.0, -3.0, -1.0};
  342. const double TestProblem14::lower_bounds[] = {-100.0, -100.0, -100.0, -100.0};
  343. const double TestProblem14::upper_bounds[] = {0.0, 10.0, 100.0, 100.0};
  344. const double TestProblem14::constrained_optimal_cost = 0.15567008e1;
  345. const double TestProblem14::unconstrained_optimal_cost = 0.0;
  346. // Kowalik and Osborne function.
  347. BEGIN_MGH_PROBLEM(TestProblem15, 4, 11)
  348. const T x1 = x[0];
  349. const T x2 = x[1];
  350. const T x3 = x[2];
  351. const T x4 = x[3];
  352. const double y[] = {0.1957, 0.1947, 0.1735, 0.1600, 0.0844, 0.0627,
  353. 0.0456, 0.0342, 0.0323, 0.0235, 0.0246};
  354. const double u[] = {4.0, 2.0, 1.0, 0.5, 0.25, 0.167, 0.125, 0.1,
  355. 0.0833, 0.0714, 0.0625};
  356. for (int i = 0; i < 11; ++i) {
  357. residual[i] = y[i] - x1 * (u[i] * u[i] + u[i] * x2) /
  358. (u[i] * u[i] + u[i] * x3 + x4);
  359. }
  360. END_MGH_PROBLEM;
  361. const double TestProblem15::initial_x[] = {0.25, 0.39, 0.415, 0.39};
  362. const double TestProblem15::lower_bounds[] = {
  363. -kDoubleMax, -kDoubleMax, -kDoubleMax, -kDoubleMax};
  364. const double TestProblem15::upper_bounds[] = {
  365. kDoubleMax, kDoubleMax, kDoubleMax, kDoubleMax};
  366. const double TestProblem15::constrained_optimal_cost =
  367. std::numeric_limits<double>::quiet_NaN();
  368. const double TestProblem15::unconstrained_optimal_cost = 3.07505e-4;
  369. // Brown and Dennis function.
  370. BEGIN_MGH_PROBLEM(TestProblem16, 4, 20)
  371. const T x1 = x[0];
  372. const T x2 = x[1];
  373. const T x3 = x[2];
  374. const T x4 = x[3];
  375. for (int i = 0; i < 20; ++i) {
  376. const double ti = (i + 1) / 5.0;
  377. residual[i] = (x1 + ti * x2 - exp(ti)) * (x1 + ti * x2 - exp(ti)) +
  378. (x3 + x4 * sin(ti) - cos(ti)) * (x3 + x4 * sin(ti) - cos(ti));
  379. }
  380. END_MGH_PROBLEM;
  381. const double TestProblem16::initial_x[] = {25.0, 5.0, -5.0, -1.0};
  382. const double TestProblem16::lower_bounds[] = {-10.0, 0.0, -100.0, -20.0};
  383. const double TestProblem16::upper_bounds[] = {100.0, 15.0, 0.0, 0.2};
  384. const double TestProblem16::constrained_optimal_cost = 0.88860479e5;
  385. const double TestProblem16::unconstrained_optimal_cost = 85822.2;
  386. // Osborne 1 function.
  387. BEGIN_MGH_PROBLEM(TestProblem17, 5, 33)
  388. const T x1 = x[0];
  389. const T x2 = x[1];
  390. const T x3 = x[2];
  391. const T x4 = x[3];
  392. const T x5 = x[4];
  393. const double y[] = {0.844, 0.908, 0.932, 0.936, 0.925, 0.908, 0.881, 0.850, 0.818,
  394. 0.784, 0.751, 0.718, 0.685, 0.658, 0.628, 0.603, 0.580, 0.558,
  395. 0.538, 0.522, 0.506, 0.490, 0.478, 0.467, 0.457, 0.448, 0.438,
  396. 0.431, 0.424, 0.420, 0.414, 0.411, 0.406};
  397. for (int i = 0; i < 33; ++i) {
  398. const double ti = 10.0 * i;
  399. residual[i] = y[i] - (x1 + x2 * exp(-ti * x4) + x3 * exp(-ti * x5));
  400. }
  401. END_MGH_PROBLEM;
  402. const double TestProblem17::initial_x[] = {0.5, 1.5, -1.0, 0.01, 0.02};
  403. const double TestProblem17::lower_bounds[] = {
  404. -kDoubleMax, -kDoubleMax, -kDoubleMax, -kDoubleMax};
  405. const double TestProblem17::upper_bounds[] = {
  406. kDoubleMax, kDoubleMax, kDoubleMax, kDoubleMax};
  407. const double TestProblem17::constrained_optimal_cost =
  408. std::numeric_limits<double>::quiet_NaN();
  409. const double TestProblem17::unconstrained_optimal_cost = 5.46489e-5;
  410. // Biggs EXP6 function.
  411. BEGIN_MGH_PROBLEM(TestProblem18, 6, 13)
  412. const T x1 = x[0];
  413. const T x2 = x[1];
  414. const T x3 = x[2];
  415. const T x4 = x[3];
  416. const T x5 = x[4];
  417. const T x6 = x[5];
  418. for (int i = 0; i < 13; ++i) {
  419. const double ti = 0.1 * (i + 1.0);
  420. const double yi = exp(-ti) - 5.0 * exp(-10.0 * ti) + 3.0 * exp(-4.0 * ti);
  421. residual[i] =
  422. x3 * exp(-ti * x1) - x4 * exp(-ti * x2) + x6 * exp(-ti * x5) - yi;
  423. }
  424. END_MGH_PROBLEM
  425. const double TestProblem18::initial_x[] = {1.0, 2.0, 1.0, 1.0, 1.0, 1.0};
  426. const double TestProblem18::lower_bounds[] = {0.0, 0.0, 0.0, 1.0, 0.0, 0.0};
  427. const double TestProblem18::upper_bounds[] = {2.0, 8.0, 1.0, 7.0, 5.0, 5.0};
  428. const double TestProblem18::constrained_optimal_cost = 0.53209865e-3;
  429. const double TestProblem18::unconstrained_optimal_cost = 0.0;
  430. // Osborne 2 function.
  431. BEGIN_MGH_PROBLEM(TestProblem19, 11, 65)
  432. const T x1 = x[0];
  433. const T x2 = x[1];
  434. const T x3 = x[2];
  435. const T x4 = x[3];
  436. const T x5 = x[4];
  437. const T x6 = x[5];
  438. const T x7 = x[6];
  439. const T x8 = x[7];
  440. const T x9 = x[8];
  441. const T x10 = x[9];
  442. const T x11 = x[10];
  443. const double y[] = {1.366, 1.191, 1.112, 1.013, 0.991,
  444. 0.885, 0.831, 0.847, 0.786, 0.725,
  445. 0.746, 0.679, 0.608, 0.655, 0.616,
  446. 0.606, 0.602, 0.626, 0.651, 0.724,
  447. 0.649, 0.649, 0.694, 0.644, 0.624,
  448. 0.661, 0.612, 0.558, 0.533, 0.495,
  449. 0.500, 0.423, 0.395, 0.375, 0.372,
  450. 0.391, 0.396, 0.405, 0.428, 0.429,
  451. 0.523, 0.562, 0.607, 0.653, 0.672,
  452. 0.708, 0.633, 0.668, 0.645, 0.632,
  453. 0.591, 0.559, 0.597, 0.625, 0.739,
  454. 0.710, 0.729, 0.720, 0.636, 0.581,
  455. 0.428, 0.292, 0.162, 0.098, 0.054};
  456. for (int i = 0; i < 65; ++i) {
  457. const double ti = i / 10.0;
  458. residual[i] = y[i] - (x1 * exp(-(ti * x5)) +
  459. x2 * exp(-(ti - x9) * (ti - x9) * x6) +
  460. x3 * exp(-(ti - x10) * (ti - x10) * x7) +
  461. x4 * exp(-(ti - x11) * (ti - x11) * x8));
  462. }
  463. END_MGH_PROBLEM;
  464. const double TestProblem19::initial_x[] = {1.3, 0.65, 0.65, 0.7, 0.6,
  465. 3.0, 5.0, 7.0, 2.0, 4.5, 5.5};
  466. const double TestProblem19::lower_bounds[] = {
  467. -kDoubleMax, -kDoubleMax, -kDoubleMax, -kDoubleMax};
  468. const double TestProblem19::upper_bounds[] = {
  469. kDoubleMax, kDoubleMax, kDoubleMax, kDoubleMax};
  470. const double TestProblem19::constrained_optimal_cost =
  471. std::numeric_limits<double>::quiet_NaN();
  472. const double TestProblem19::unconstrained_optimal_cost = 4.01377e-2;
  473. #undef BEGIN_MGH_PROBLEM
  474. #undef END_MGH_PROBLEM
  475. // clang-format on
  476. template <typename TestProblem>
  477. bool Solve(bool is_constrained, int trial) {
  478. double x[TestProblem::kNumParameters];
  479. for (int i = 0; i < TestProblem::kNumParameters; ++i) {
  480. x[i] = pow(10, trial) * TestProblem::initial_x[i];
  481. }
  482. Problem problem;
  483. problem.AddResidualBlock(TestProblem::Create(), nullptr, x);
  484. double optimal_cost = TestProblem::unconstrained_optimal_cost;
  485. if (is_constrained) {
  486. for (int i = 0; i < TestProblem::kNumParameters; ++i) {
  487. problem.SetParameterLowerBound(x, i, TestProblem::lower_bounds[i]);
  488. problem.SetParameterUpperBound(x, i, TestProblem::upper_bounds[i]);
  489. }
  490. optimal_cost = TestProblem::constrained_optimal_cost;
  491. }
  492. Solver::Options options;
  493. options.parameter_tolerance = 1e-18;
  494. options.function_tolerance = 1e-18;
  495. options.gradient_tolerance = 1e-18;
  496. options.max_num_iterations = 1000;
  497. options.linear_solver_type = DENSE_QR;
  498. Solver::Summary summary;
  499. Solve(options, &problem, &summary);
  500. const double kMinLogRelativeError = 4.0;
  501. const double log_relative_error =
  502. -std::log10(std::abs(2.0 * summary.final_cost - optimal_cost) /
  503. (optimal_cost > 0.0 ? optimal_cost : 1.0));
  504. const bool success = log_relative_error >= kMinLogRelativeError;
  505. LOG(INFO) << "Expected : " << optimal_cost
  506. << " actual: " << 2.0 * summary.final_cost << " " << success
  507. << " in " << summary.total_time_in_seconds << " seconds";
  508. return success;
  509. }
  510. } // namespace ceres::examples
  511. int main(int argc, char** argv) {
  512. GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
  513. google::InitGoogleLogging(argv[0]);
  514. using ceres::examples::Solve;
  515. int unconstrained_problems = 0;
  516. int unconstrained_successes = 0;
  517. int constrained_problems = 0;
  518. int constrained_successes = 0;
  519. std::stringstream ss;
  520. #define UNCONSTRAINED_SOLVE(n) \
  521. ss << "Unconstrained Problem " << n << " : "; \
  522. if (CERES_GET_FLAG(FLAGS_problem) == #n || \
  523. CERES_GET_FLAG(FLAGS_problem) == "all") { \
  524. unconstrained_problems += 3; \
  525. if (Solve<ceres::examples::TestProblem##n>(false, 0)) { \
  526. unconstrained_successes += 1; \
  527. ss << "Yes "; \
  528. } else { \
  529. ss << "No "; \
  530. } \
  531. if (Solve<ceres::examples::TestProblem##n>(false, 1)) { \
  532. unconstrained_successes += 1; \
  533. ss << "Yes "; \
  534. } else { \
  535. ss << "No "; \
  536. } \
  537. if (Solve<ceres::examples::TestProblem##n>(false, 2)) { \
  538. unconstrained_successes += 1; \
  539. ss << "Yes "; \
  540. } else { \
  541. ss << "No "; \
  542. } \
  543. } \
  544. ss << std::endl;
  545. UNCONSTRAINED_SOLVE(1);
  546. UNCONSTRAINED_SOLVE(2);
  547. UNCONSTRAINED_SOLVE(3);
  548. UNCONSTRAINED_SOLVE(4);
  549. UNCONSTRAINED_SOLVE(5);
  550. UNCONSTRAINED_SOLVE(6);
  551. UNCONSTRAINED_SOLVE(7);
  552. UNCONSTRAINED_SOLVE(8);
  553. UNCONSTRAINED_SOLVE(9);
  554. UNCONSTRAINED_SOLVE(10);
  555. UNCONSTRAINED_SOLVE(11);
  556. UNCONSTRAINED_SOLVE(12);
  557. UNCONSTRAINED_SOLVE(13);
  558. UNCONSTRAINED_SOLVE(14);
  559. UNCONSTRAINED_SOLVE(15);
  560. UNCONSTRAINED_SOLVE(16);
  561. UNCONSTRAINED_SOLVE(17);
  562. UNCONSTRAINED_SOLVE(18);
  563. UNCONSTRAINED_SOLVE(19);
  564. ss << "Unconstrained : " << unconstrained_successes << "/"
  565. << unconstrained_problems << std::endl;
  566. #define CONSTRAINED_SOLVE(n) \
  567. ss << "Constrained Problem " << n << " : "; \
  568. if (CERES_GET_FLAG(FLAGS_problem) == #n || \
  569. CERES_GET_FLAG(FLAGS_problem) == "all") { \
  570. constrained_problems += 1; \
  571. if (Solve<ceres::examples::TestProblem##n>(true, 0)) { \
  572. constrained_successes += 1; \
  573. ss << "Yes "; \
  574. } else { \
  575. ss << "No "; \
  576. } \
  577. } \
  578. ss << std::endl;
  579. CONSTRAINED_SOLVE(3);
  580. CONSTRAINED_SOLVE(4);
  581. CONSTRAINED_SOLVE(5);
  582. CONSTRAINED_SOLVE(7);
  583. CONSTRAINED_SOLVE(9);
  584. CONSTRAINED_SOLVE(11);
  585. CONSTRAINED_SOLVE(12);
  586. CONSTRAINED_SOLVE(14);
  587. CONSTRAINED_SOLVE(16);
  588. CONSTRAINED_SOLVE(18);
  589. ss << "Constrained : " << constrained_successes << "/" << constrained_problems
  590. << std::endl;
  591. std::cout << ss.str();
  592. return 0;
  593. }