helloworld_numeric_diff.cc 2.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172
  1. // Ceres Solver - A fast non-linear least squares minimizer
  2. // Copyright 2023 Google Inc. All rights reserved.
  3. // http://ceres-solver.org/
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are met:
  7. //
  8. // * Redistributions of source code must retain the above copyright notice,
  9. // this list of conditions and the following disclaimer.
  10. // * Redistributions in binary form must reproduce the above copyright notice,
  11. // this list of conditions and the following disclaimer in the documentation
  12. // and/or other materials provided with the distribution.
  13. // * Neither the name of Google Inc. nor the names of its contributors may be
  14. // used to endorse or promote products derived from this software without
  15. // specific prior written permission.
  16. //
  17. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  18. // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  19. // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  20. // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  21. // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  22. // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  23. // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  24. // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  25. // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  26. // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  27. // POSSIBILITY OF SUCH DAMAGE.
  28. //
  29. // Author: keir@google.com (Keir Mierle)
  30. //
  31. // Minimize 0.5 (10 - x)^2 using jacobian matrix computed using
  32. // numeric differentiation.
  33. #include "ceres/ceres.h"
  34. #include "glog/logging.h"
  35. // A cost functor that implements the residual r = 10 - x.
  36. struct CostFunctor {
  37. bool operator()(const double* const x, double* residual) const {
  38. residual[0] = 10.0 - x[0];
  39. return true;
  40. }
  41. };
  42. int main(int argc, char** argv) {
  43. google::InitGoogleLogging(argv[0]);
  44. // The variable to solve for with its initial value. It will be
  45. // mutated in place by the solver.
  46. double x = 0.5;
  47. const double initial_x = x;
  48. // Build the problem.
  49. ceres::Problem problem;
  50. // Set up the only cost function (also known as residual). This uses
  51. // numeric differentiation to obtain the derivative (jacobian).
  52. ceres::CostFunction* cost_function =
  53. new ceres::NumericDiffCostFunction<CostFunctor, ceres::CENTRAL, 1, 1>(
  54. new CostFunctor);
  55. problem.AddResidualBlock(cost_function, nullptr, &x);
  56. // Run the solver!
  57. ceres::Solver::Options options;
  58. options.minimizer_progress_to_stdout = true;
  59. ceres::Solver::Summary summary;
  60. ceres::Solve(options, &problem, &summary);
  61. std::cout << summary.BriefReport() << "\n";
  62. std::cout << "x : " << initial_x << " -> " << x << "\n";
  63. return 0;
  64. }