123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: keir@google.com (Keir Mierle)
- //
- // A simple example of using the Ceres minimizer.
- //
- // Minimize 0.5 (10 - x)^2 using analytic jacobian matrix.
- #include <vector>
- #include "ceres/ceres.h"
- #include "glog/logging.h"
- // A CostFunction implementing analytically derivatives for the
- // function f(x) = 10 - x.
- class QuadraticCostFunction
- : public ceres::SizedCostFunction<1 /* number of residuals */,
- 1 /* size of first parameter */> {
- public:
- bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const override {
- double x = parameters[0][0];
- // f(x) = 10 - x.
- residuals[0] = 10 - x;
- // f'(x) = -1. Since there's only 1 parameter and that parameter
- // has 1 dimension, there is only 1 element to fill in the
- // jacobians.
- //
- // Since the Evaluate function can be called with the jacobians
- // pointer equal to nullptr, the Evaluate function must check to see
- // if jacobians need to be computed.
- //
- // For this simple problem it is overkill to check if jacobians[0]
- // is nullptr, but in general when writing more complex
- // CostFunctions, it is possible that Ceres may only demand the
- // derivatives w.r.t. a subset of the parameter blocks.
- if (jacobians != nullptr && jacobians[0] != nullptr) {
- jacobians[0][0] = -1;
- }
- return true;
- }
- };
- int main(int argc, char** argv) {
- google::InitGoogleLogging(argv[0]);
- // The variable to solve for with its initial value. It will be
- // mutated in place by the solver.
- double x = 0.5;
- const double initial_x = x;
- // Build the problem.
- ceres::Problem problem;
- // Set up the only cost function (also known as residual).
- ceres::CostFunction* cost_function = new QuadraticCostFunction;
- problem.AddResidualBlock(cost_function, nullptr, &x);
- // Run the solver!
- ceres::Solver::Options options;
- options.minimizer_progress_to_stdout = true;
- ceres::Solver::Summary summary;
- ceres::Solve(options, &problem, &summary);
- std::cout << summary.BriefReport() << "\n";
- std::cout << "x : " << initial_x << " -> " << x << "\n";
- return 0;
- }
|