1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: keir@google.com (Keir Mierle)
- //
- // A simple example of using the Ceres minimizer.
- //
- // Minimize 0.5 (10 - x)^2 using jacobian matrix computed using
- // automatic differentiation.
- #include "ceres/ceres.h"
- #include "glog/logging.h"
- // A templated cost functor that implements the residual r = 10 -
- // x. The method operator() is templated so that we can then use an
- // automatic differentiation wrapper around it to generate its
- // derivatives.
- struct CostFunctor {
- template <typename T>
- bool operator()(const T* const x, T* residual) const {
- residual[0] = 10.0 - x[0];
- return true;
- }
- };
- int main(int argc, char** argv) {
- google::InitGoogleLogging(argv[0]);
- // The variable to solve for with its initial value. It will be
- // mutated in place by the solver.
- double x = 0.5;
- const double initial_x = x;
- // Build the problem.
- ceres::Problem problem;
- // Set up the only cost function (also known as residual). This uses
- // auto-differentiation to obtain the derivative (jacobian).
- ceres::CostFunction* cost_function =
- new ceres::AutoDiffCostFunction<CostFunctor, 1, 1>(new CostFunctor);
- problem.AddResidualBlock(cost_function, nullptr, &x);
- // Run the solver!
- ceres::Solver::Options options;
- options.minimizer_progress_to_stdout = true;
- ceres::Solver::Summary summary;
- ceres::Solve(options, &problem, &summary);
- std::cout << summary.BriefReport() << "\n";
- std::cout << "x : " << initial_x << " -> " << x << "\n";
- return 0;
- }
|