123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: strandmark@google.com (Petter Strandmark)
- //
- // Class for loading the data required for describing a Fields of Experts (FoE)
- // model. The Fields of Experts regularization consists of terms of the type
- //
- // alpha * log(1 + (1/2)*sum(F .* X)^2),
- //
- // where F is a d-by-d image patch and alpha is a constant. This is implemented
- // by a FieldsOfExpertsSum object which represents the dot product between the
- // image patches and a FieldsOfExpertsLoss which implements the log(1 + (1/2)s)
- // part.
- //
- // [1] S. Roth and M.J. Black. "Fields of Experts." International Journal of
- // Computer Vision, 82(2):205--229, 2009.
- #ifndef CERES_EXAMPLES_FIELDS_OF_EXPERTS_H_
- #define CERES_EXAMPLES_FIELDS_OF_EXPERTS_H_
- #include <iostream>
- #include <vector>
- #include "ceres/cost_function.h"
- #include "ceres/loss_function.h"
- #include "ceres/sized_cost_function.h"
- #include "pgm_image.h"
- namespace ceres::examples {
- // One sum in the FoE regularizer. This is a dot product between a filter and an
- // image patch. It simply calculates the dot product between the filter
- // coefficients given in the constructor and the scalar parameters passed to it.
- class FieldsOfExpertsCost : public ceres::CostFunction {
- public:
- explicit FieldsOfExpertsCost(const std::vector<double>& filter);
- // The number of scalar parameters passed to Evaluate must equal the number of
- // filter coefficients passed to the constructor.
- bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const override;
- private:
- const std::vector<double>& filter_;
- };
- // The loss function used to build the correct regularization. See above.
- //
- // f(x) = alpha_i * log(1 + (1/2)s)
- //
- class FieldsOfExpertsLoss : public ceres::LossFunction {
- public:
- explicit FieldsOfExpertsLoss(double alpha) : alpha_(alpha) {}
- void Evaluate(double, double*) const override;
- private:
- const double alpha_;
- };
- // This class loads a set of filters and coefficients from file. Then the users
- // obtains the correct loss and cost functions through NewCostFunction and
- // NewLossFunction.
- class FieldsOfExperts {
- public:
- // Creates an empty object with size() == 0.
- FieldsOfExperts();
- // Attempts to load filters from a file. If unsuccessful it returns false and
- // sets size() == 0.
- bool LoadFromFile(const std::string& filename);
- // Side length of a square filter in this FoE. They are all of the same size.
- int Size() const { return size_; }
- // Total number of pixels the filter covers.
- int NumVariables() const { return size_ * size_; }
- // Number of filters used by the FoE.
- int NumFilters() const { return num_filters_; }
- // Creates a new cost function. The caller is responsible for deallocating the
- // memory. alpha_index specifies which filter is used in the cost function.
- ceres::CostFunction* NewCostFunction(int alpha_index) const;
- // Creates a new loss function. The caller is responsible for deallocating the
- // memory. alpha_index specifies which filter this loss function is for.
- ceres::LossFunction* NewLossFunction(int alpha_index) const;
- // Gets the delta pixel indices for all pixels in a patch.
- const std::vector<int>& GetXDeltaIndices() const { return x_delta_indices_; }
- const std::vector<int>& GetYDeltaIndices() const { return y_delta_indices_; }
- private:
- // The side length of a square filter.
- int size_;
- // The number of different filters used.
- int num_filters_;
- // Pixel offsets for all variables.
- std::vector<int> x_delta_indices_, y_delta_indices_;
- // The coefficients in front of each term.
- std::vector<double> alpha_;
- // The filters used for the dot product with image patches.
- std::vector<std::vector<double>> filters_;
- };
- } // namespace ceres::examples
- #endif // CERES_EXAMPLES_FIELDS_OF_EXPERTS_H_
|