evaluation_callback_example.cc 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257
  1. // Ceres Solver - A fast non-linear least squares minimizer
  2. // Copyright 2023 Google Inc. All rights reserved.
  3. // http://ceres-solver.org/
  4. //
  5. // Redistribution and use in source and binary forms, with or without
  6. // modification, are permitted provided that the following conditions are met:
  7. //
  8. // * Redistributions of source code must retain the above copyright notice,
  9. // this list of conditions and the following disclaimer.
  10. // * Redistributions in binary form must reproduce the above copyright notice,
  11. // this list of conditions and the following disclaimer in the documentation
  12. // and/or other materials provided with the distribution.
  13. // * Neither the name of Google Inc. nor the names of its contributors may be
  14. // used to endorse or promote products derived from this software without
  15. // specific prior written permission.
  16. //
  17. // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  18. // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  19. // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  20. // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
  21. // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  22. // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  23. // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  24. // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  25. // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  26. // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  27. // POSSIBILITY OF SUCH DAMAGE.
  28. //
  29. // Author: sameeragarwal@google.com (Sameer Agarwal)
  30. //
  31. // This example illustrates the use of the EvaluationCallback, which can be used
  32. // to perform high performance computation of the residual and Jacobians outside
  33. // Ceres (in this case using Eigen's vectorized code) and then the CostFunctions
  34. // just copy these computed residuals and Jacobians appropriately and pass them
  35. // to Ceres Solver.
  36. //
  37. // The results of running this example should be identical to the results
  38. // obtained by running curve_fitting.cc. The only difference between the two
  39. // examples is how the residuals and Jacobians are computed.
  40. //
  41. // The observant reader will note that both here and curve_fitting.cc instead of
  42. // creating one ResidualBlock for each observation one can just do one
  43. // ResidualBlock/CostFunction for the entire problem. The reason for keeping one
  44. // residual per observation is that it is what is needed if and when we need to
  45. // introduce a loss function which is what we do in robust_curve_fitting.cc
  46. #include <iostream>
  47. #include "Eigen/Core"
  48. #include "ceres/ceres.h"
  49. #include "glog/logging.h"
  50. // Data generated using the following octave code.
  51. // randn('seed', 23497);
  52. // m = 0.3;
  53. // c = 0.1;
  54. // x=[0:0.075:5];
  55. // y = exp(m * x + c);
  56. // noise = randn(size(x)) * 0.2;
  57. // y_observed = y + noise;
  58. // data = [x', y_observed'];
  59. const int kNumObservations = 67;
  60. // clang-format off
  61. const double data[] = {
  62. 0.000000e+00, 1.133898e+00,
  63. 7.500000e-02, 1.334902e+00,
  64. 1.500000e-01, 1.213546e+00,
  65. 2.250000e-01, 1.252016e+00,
  66. 3.000000e-01, 1.392265e+00,
  67. 3.750000e-01, 1.314458e+00,
  68. 4.500000e-01, 1.472541e+00,
  69. 5.250000e-01, 1.536218e+00,
  70. 6.000000e-01, 1.355679e+00,
  71. 6.750000e-01, 1.463566e+00,
  72. 7.500000e-01, 1.490201e+00,
  73. 8.250000e-01, 1.658699e+00,
  74. 9.000000e-01, 1.067574e+00,
  75. 9.750000e-01, 1.464629e+00,
  76. 1.050000e+00, 1.402653e+00,
  77. 1.125000e+00, 1.713141e+00,
  78. 1.200000e+00, 1.527021e+00,
  79. 1.275000e+00, 1.702632e+00,
  80. 1.350000e+00, 1.423899e+00,
  81. 1.425000e+00, 1.543078e+00,
  82. 1.500000e+00, 1.664015e+00,
  83. 1.575000e+00, 1.732484e+00,
  84. 1.650000e+00, 1.543296e+00,
  85. 1.725000e+00, 1.959523e+00,
  86. 1.800000e+00, 1.685132e+00,
  87. 1.875000e+00, 1.951791e+00,
  88. 1.950000e+00, 2.095346e+00,
  89. 2.025000e+00, 2.361460e+00,
  90. 2.100000e+00, 2.169119e+00,
  91. 2.175000e+00, 2.061745e+00,
  92. 2.250000e+00, 2.178641e+00,
  93. 2.325000e+00, 2.104346e+00,
  94. 2.400000e+00, 2.584470e+00,
  95. 2.475000e+00, 1.914158e+00,
  96. 2.550000e+00, 2.368375e+00,
  97. 2.625000e+00, 2.686125e+00,
  98. 2.700000e+00, 2.712395e+00,
  99. 2.775000e+00, 2.499511e+00,
  100. 2.850000e+00, 2.558897e+00,
  101. 2.925000e+00, 2.309154e+00,
  102. 3.000000e+00, 2.869503e+00,
  103. 3.075000e+00, 3.116645e+00,
  104. 3.150000e+00, 3.094907e+00,
  105. 3.225000e+00, 2.471759e+00,
  106. 3.300000e+00, 3.017131e+00,
  107. 3.375000e+00, 3.232381e+00,
  108. 3.450000e+00, 2.944596e+00,
  109. 3.525000e+00, 3.385343e+00,
  110. 3.600000e+00, 3.199826e+00,
  111. 3.675000e+00, 3.423039e+00,
  112. 3.750000e+00, 3.621552e+00,
  113. 3.825000e+00, 3.559255e+00,
  114. 3.900000e+00, 3.530713e+00,
  115. 3.975000e+00, 3.561766e+00,
  116. 4.050000e+00, 3.544574e+00,
  117. 4.125000e+00, 3.867945e+00,
  118. 4.200000e+00, 4.049776e+00,
  119. 4.275000e+00, 3.885601e+00,
  120. 4.350000e+00, 4.110505e+00,
  121. 4.425000e+00, 4.345320e+00,
  122. 4.500000e+00, 4.161241e+00,
  123. 4.575000e+00, 4.363407e+00,
  124. 4.650000e+00, 4.161576e+00,
  125. 4.725000e+00, 4.619728e+00,
  126. 4.800000e+00, 4.737410e+00,
  127. 4.875000e+00, 4.727863e+00,
  128. 4.950000e+00, 4.669206e+00,
  129. };
  130. // clang-format on
  131. // This implementation of the EvaluationCallback interface also stores the
  132. // residuals and Jacobians that the CostFunction copies their values from.
  133. class MyEvaluationCallback : public ceres::EvaluationCallback {
  134. public:
  135. // m and c are passed by reference so that we have access to their values as
  136. // they evolve over time through the course of optimization.
  137. MyEvaluationCallback(const double& m, const double& c) : m_(m), c_(c) {
  138. x_ = Eigen::VectorXd::Zero(kNumObservations);
  139. y_ = Eigen::VectorXd::Zero(kNumObservations);
  140. residuals_ = Eigen::VectorXd::Zero(kNumObservations);
  141. jacobians_ = Eigen::MatrixXd::Zero(kNumObservations, 2);
  142. for (int i = 0; i < kNumObservations; ++i) {
  143. x_[i] = data[2 * i];
  144. y_[i] = data[2 * i + 1];
  145. }
  146. PrepareForEvaluation(true, true);
  147. }
  148. void PrepareForEvaluation(bool evaluate_jacobians,
  149. bool new_evaluation_point) final {
  150. if (new_evaluation_point) {
  151. ComputeResidualAndJacobian(evaluate_jacobians);
  152. jacobians_are_stale_ = !evaluate_jacobians;
  153. } else {
  154. if (evaluate_jacobians && jacobians_are_stale_) {
  155. ComputeResidualAndJacobian(evaluate_jacobians);
  156. jacobians_are_stale_ = false;
  157. }
  158. }
  159. }
  160. const Eigen::VectorXd& residuals() const { return residuals_; }
  161. const Eigen::MatrixXd& jacobians() const { return jacobians_; }
  162. bool jacobians_are_stale() const { return jacobians_are_stale_; }
  163. private:
  164. void ComputeResidualAndJacobian(bool evaluate_jacobians) {
  165. residuals_ = -(m_ * x_.array() + c_).exp();
  166. if (evaluate_jacobians) {
  167. jacobians_.col(0) = residuals_.array() * x_.array();
  168. jacobians_.col(1) = residuals_;
  169. }
  170. residuals_ += y_;
  171. }
  172. const double& m_;
  173. const double& c_;
  174. Eigen::VectorXd x_;
  175. Eigen::VectorXd y_;
  176. Eigen::VectorXd residuals_;
  177. Eigen::MatrixXd jacobians_;
  178. // jacobians_are_stale_ keeps track of whether the jacobian matrix matches the
  179. // residuals or not, we only compute it if we know that Solver is going to
  180. // need access to it.
  181. bool jacobians_are_stale_ = true;
  182. };
  183. // As the name implies this CostFunction does not do any computation, it just
  184. // copies the appropriate residual and Jacobian from the matrices stored in
  185. // MyEvaluationCallback.
  186. class CostAndJacobianCopyingCostFunction
  187. : public ceres::SizedCostFunction<1, 1, 1> {
  188. public:
  189. CostAndJacobianCopyingCostFunction(
  190. int index, const MyEvaluationCallback& evaluation_callback)
  191. : index_(index), evaluation_callback_(evaluation_callback) {}
  192. ~CostAndJacobianCopyingCostFunction() override = default;
  193. bool Evaluate(double const* const* parameters,
  194. double* residuals,
  195. double** jacobians) const final {
  196. residuals[0] = evaluation_callback_.residuals()(index_);
  197. if (!jacobians) return true;
  198. // Ensure that we are not using stale Jacobians.
  199. CHECK(!evaluation_callback_.jacobians_are_stale());
  200. if (jacobians[0] != nullptr)
  201. jacobians[0][0] = evaluation_callback_.jacobians()(index_, 0);
  202. if (jacobians[1] != nullptr)
  203. jacobians[1][0] = evaluation_callback_.jacobians()(index_, 1);
  204. return true;
  205. }
  206. private:
  207. int index_ = -1;
  208. const MyEvaluationCallback& evaluation_callback_;
  209. };
  210. int main(int argc, char** argv) {
  211. google::InitGoogleLogging(argv[0]);
  212. const double initial_m = 0.0;
  213. const double initial_c = 0.0;
  214. double m = initial_m;
  215. double c = initial_c;
  216. MyEvaluationCallback evaluation_callback(m, c);
  217. ceres::Problem::Options problem_options;
  218. problem_options.evaluation_callback = &evaluation_callback;
  219. ceres::Problem problem(problem_options);
  220. for (int i = 0; i < kNumObservations; ++i) {
  221. problem.AddResidualBlock(
  222. new CostAndJacobianCopyingCostFunction(i, evaluation_callback),
  223. nullptr,
  224. &m,
  225. &c);
  226. }
  227. ceres::Solver::Options options;
  228. options.max_num_iterations = 25;
  229. options.linear_solver_type = ceres::DENSE_QR;
  230. options.minimizer_progress_to_stdout = true;
  231. ceres::Solver::Summary summary;
  232. ceres::Solve(options, &problem, &summary);
  233. std::cout << summary.BriefReport() << "\n";
  234. std::cout << "Initial m: " << initial_m << " c: " << initial_c << "\n";
  235. std::cout << "Final m: " << m << " c: " << c << "\n";
  236. return 0;
  237. }