123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394 |
- // Ceres Solver - A fast non-linear least squares minimizer
- // Copyright 2023 Google Inc. All rights reserved.
- // http://ceres-solver.org/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are met:
- //
- // * Redistributions of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- // * Neither the name of Google Inc. nor the names of its contributors may be
- // used to endorse or promote products derived from this software without
- // specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
- // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
- // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
- // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
- // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
- // POSSIBILITY OF SUCH DAMAGE.
- //
- // Author: sameeragarwal@google.com (Sameer Agarwal)
- //
- // An example of solving a dynamically sized problem with various
- // solvers and loss functions.
- //
- // For a simpler bare bones example of doing bundle adjustment with
- // Ceres, please see simple_bundle_adjuster.cc.
- //
- // NOTE: This example will not compile without gflags and SuiteSparse.
- //
- // The problem being solved here is known as a Bundle Adjustment
- // problem in computer vision. Given a set of 3d points X_1, ..., X_n,
- // a set of cameras P_1, ..., P_m. If the point X_i is visible in
- // image j, then there is a 2D observation u_ij that is the expected
- // projection of X_i using P_j. The aim of this optimization is to
- // find values of X_i and P_j such that the reprojection error
- //
- // E(X,P) = sum_ij |u_ij - P_j X_i|^2
- //
- // is minimized.
- //
- // The problem used here comes from a collection of bundle adjustment
- // problems published at University of Washington.
- // http://grail.cs.washington.edu/projects/bal
- #include <algorithm>
- #include <cmath>
- #include <cstdio>
- #include <cstdlib>
- #include <memory>
- #include <string>
- #include <thread>
- #include <vector>
- #include "bal_problem.h"
- #include "ceres/ceres.h"
- #include "gflags/gflags.h"
- #include "glog/logging.h"
- #include "snavely_reprojection_error.h"
- // clang-format makes the gflags definitions too verbose
- // clang-format off
- DEFINE_string(input, "", "Input File name");
- DEFINE_string(trust_region_strategy, "levenberg_marquardt",
- "Options are: levenberg_marquardt, dogleg.");
- DEFINE_string(dogleg, "traditional_dogleg", "Options are: traditional_dogleg,"
- "subspace_dogleg.");
- DEFINE_bool(inner_iterations, false, "Use inner iterations to non-linearly "
- "refine each successful trust region step.");
- DEFINE_string(blocks_for_inner_iterations, "automatic", "Options are: "
- "automatic, cameras, points, cameras,points, points,cameras");
- DEFINE_string(linear_solver, "sparse_schur", "Options are: "
- "sparse_schur, dense_schur, iterative_schur, "
- "sparse_normal_cholesky, dense_qr, dense_normal_cholesky, "
- "and cgnr.");
- DEFINE_bool(explicit_schur_complement, false, "If using ITERATIVE_SCHUR "
- "then explicitly compute the Schur complement.");
- DEFINE_string(preconditioner, "jacobi", "Options are: "
- "identity, jacobi, schur_jacobi, schur_power_series_expansion, cluster_jacobi, "
- "cluster_tridiagonal.");
- DEFINE_string(visibility_clustering, "canonical_views",
- "single_linkage, canonical_views");
- DEFINE_bool(use_spse_initialization, false,
- "Use power series expansion to initialize the solution in ITERATIVE_SCHUR linear solver.");
- DEFINE_string(sparse_linear_algebra_library, "suite_sparse",
- "Options are: suite_sparse, accelerate_sparse, eigen_sparse, and "
- "cuda_sparse.");
- DEFINE_string(dense_linear_algebra_library, "eigen",
- "Options are: eigen, lapack, and cuda");
- DEFINE_string(ordering_type, "amd", "Options are: amd, nesdis");
- DEFINE_string(linear_solver_ordering, "user",
- "Options are: automatic and user");
- DEFINE_bool(use_quaternions, false, "If true, uses quaternions to represent "
- "rotations. If false, angle axis is used.");
- DEFINE_bool(use_manifolds, false, "For quaternions, use a manifold.");
- DEFINE_bool(robustify, false, "Use a robust loss function.");
- DEFINE_double(eta, 1e-2, "Default value for eta. Eta determines the "
- "accuracy of each linear solve of the truncated newton step. "
- "Changing this parameter can affect solve performance.");
- DEFINE_int32(num_threads, -1, "Number of threads. -1 = std::thread::hardware_concurrency.");
- DEFINE_int32(num_iterations, 5, "Number of iterations.");
- DEFINE_int32(max_linear_solver_iterations, 500, "Maximum number of iterations"
- " for solution of linear system.");
- DEFINE_double(spse_tolerance, 0.1,
- "Tolerance to reach during the iterations of power series expansion initialization or preconditioning.");
- DEFINE_int32(max_num_spse_iterations, 5,
- "Maximum number of iterations for power series expansion initialization or preconditioning.");
- DEFINE_double(max_solver_time, 1e32, "Maximum solve time in seconds.");
- DEFINE_bool(nonmonotonic_steps, false, "Trust region algorithm can use"
- " nonmonotic steps.");
- DEFINE_double(rotation_sigma, 0.0, "Standard deviation of camera rotation "
- "perturbation.");
- DEFINE_double(translation_sigma, 0.0, "Standard deviation of the camera "
- "translation perturbation.");
- DEFINE_double(point_sigma, 0.0, "Standard deviation of the point "
- "perturbation.");
- DEFINE_int32(random_seed, 38401, "Random seed used to set the state "
- "of the pseudo random number generator used to generate "
- "the perturbations.");
- DEFINE_bool(line_search, false, "Use a line search instead of trust region "
- "algorithm.");
- DEFINE_bool(mixed_precision_solves, false, "Use mixed precision solves.");
- DEFINE_int32(max_num_refinement_iterations, 0, "Iterative refinement iterations");
- DEFINE_string(initial_ply, "", "Export the BAL file data as a PLY file.");
- DEFINE_string(final_ply, "", "Export the refined BAL file data as a PLY "
- "file.");
- // clang-format on
- namespace ceres::examples {
- namespace {
- void SetLinearSolver(Solver::Options* options) {
- CHECK(StringToLinearSolverType(CERES_GET_FLAG(FLAGS_linear_solver),
- &options->linear_solver_type));
- CHECK(StringToPreconditionerType(CERES_GET_FLAG(FLAGS_preconditioner),
- &options->preconditioner_type));
- CHECK(StringToVisibilityClusteringType(
- CERES_GET_FLAG(FLAGS_visibility_clustering),
- &options->visibility_clustering_type));
- CHECK(StringToSparseLinearAlgebraLibraryType(
- CERES_GET_FLAG(FLAGS_sparse_linear_algebra_library),
- &options->sparse_linear_algebra_library_type));
- CHECK(StringToDenseLinearAlgebraLibraryType(
- CERES_GET_FLAG(FLAGS_dense_linear_algebra_library),
- &options->dense_linear_algebra_library_type));
- CHECK(
- StringToLinearSolverOrderingType(CERES_GET_FLAG(FLAGS_ordering_type),
- &options->linear_solver_ordering_type));
- options->use_explicit_schur_complement =
- CERES_GET_FLAG(FLAGS_explicit_schur_complement);
- options->use_mixed_precision_solves =
- CERES_GET_FLAG(FLAGS_mixed_precision_solves);
- options->max_num_refinement_iterations =
- CERES_GET_FLAG(FLAGS_max_num_refinement_iterations);
- options->max_linear_solver_iterations =
- CERES_GET_FLAG(FLAGS_max_linear_solver_iterations);
- options->use_spse_initialization =
- CERES_GET_FLAG(FLAGS_use_spse_initialization);
- options->spse_tolerance = CERES_GET_FLAG(FLAGS_spse_tolerance);
- options->max_num_spse_iterations =
- CERES_GET_FLAG(FLAGS_max_num_spse_iterations);
- }
- void SetOrdering(BALProblem* bal_problem, Solver::Options* options) {
- const int num_points = bal_problem->num_points();
- const int point_block_size = bal_problem->point_block_size();
- double* points = bal_problem->mutable_points();
- const int num_cameras = bal_problem->num_cameras();
- const int camera_block_size = bal_problem->camera_block_size();
- double* cameras = bal_problem->mutable_cameras();
- if (options->use_inner_iterations) {
- if (CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations) == "cameras") {
- LOG(INFO) << "Camera blocks for inner iterations";
- options->inner_iteration_ordering =
- std::make_shared<ParameterBlockOrdering>();
- for (int i = 0; i < num_cameras; ++i) {
- options->inner_iteration_ordering->AddElementToGroup(
- cameras + camera_block_size * i, 0);
- }
- } else if (CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations) == "points") {
- LOG(INFO) << "Point blocks for inner iterations";
- options->inner_iteration_ordering =
- std::make_shared<ParameterBlockOrdering>();
- for (int i = 0; i < num_points; ++i) {
- options->inner_iteration_ordering->AddElementToGroup(
- points + point_block_size * i, 0);
- }
- } else if (CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations) ==
- "cameras,points") {
- LOG(INFO) << "Camera followed by point blocks for inner iterations";
- options->inner_iteration_ordering =
- std::make_shared<ParameterBlockOrdering>();
- for (int i = 0; i < num_cameras; ++i) {
- options->inner_iteration_ordering->AddElementToGroup(
- cameras + camera_block_size * i, 0);
- }
- for (int i = 0; i < num_points; ++i) {
- options->inner_iteration_ordering->AddElementToGroup(
- points + point_block_size * i, 1);
- }
- } else if (CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations) ==
- "points,cameras") {
- LOG(INFO) << "Point followed by camera blocks for inner iterations";
- options->inner_iteration_ordering =
- std::make_shared<ParameterBlockOrdering>();
- for (int i = 0; i < num_cameras; ++i) {
- options->inner_iteration_ordering->AddElementToGroup(
- cameras + camera_block_size * i, 1);
- }
- for (int i = 0; i < num_points; ++i) {
- options->inner_iteration_ordering->AddElementToGroup(
- points + point_block_size * i, 0);
- }
- } else if (CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations) ==
- "automatic") {
- LOG(INFO) << "Choosing automatic blocks for inner iterations";
- } else {
- LOG(FATAL) << "Unknown block type for inner iterations: "
- << CERES_GET_FLAG(FLAGS_blocks_for_inner_iterations);
- }
- }
- // Bundle adjustment problems have a sparsity structure that makes
- // them amenable to more specialized and much more efficient
- // solution strategies. The SPARSE_SCHUR, DENSE_SCHUR and
- // ITERATIVE_SCHUR solvers make use of this specialized
- // structure.
- //
- // This can either be done by specifying a
- // Options::linear_solver_ordering or having Ceres figure it out
- // automatically using a greedy maximum independent set algorithm.
- if (CERES_GET_FLAG(FLAGS_linear_solver_ordering) == "user") {
- auto* ordering = new ceres::ParameterBlockOrdering;
- // The points come before the cameras.
- for (int i = 0; i < num_points; ++i) {
- ordering->AddElementToGroup(points + point_block_size * i, 0);
- }
- for (int i = 0; i < num_cameras; ++i) {
- // When using axis-angle, there is a single parameter block for
- // the entire camera.
- ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
- }
- options->linear_solver_ordering.reset(ordering);
- }
- }
- void SetMinimizerOptions(Solver::Options* options) {
- options->max_num_iterations = CERES_GET_FLAG(FLAGS_num_iterations);
- options->minimizer_progress_to_stdout = true;
- if (CERES_GET_FLAG(FLAGS_num_threads) == -1) {
- const int num_available_threads =
- static_cast<int>(std::thread::hardware_concurrency());
- if (num_available_threads > 0) {
- options->num_threads = num_available_threads;
- }
- } else {
- options->num_threads = CERES_GET_FLAG(FLAGS_num_threads);
- }
- CHECK_GE(options->num_threads, 1);
- options->eta = CERES_GET_FLAG(FLAGS_eta);
- options->max_solver_time_in_seconds = CERES_GET_FLAG(FLAGS_max_solver_time);
- options->use_nonmonotonic_steps = CERES_GET_FLAG(FLAGS_nonmonotonic_steps);
- if (CERES_GET_FLAG(FLAGS_line_search)) {
- options->minimizer_type = ceres::LINE_SEARCH;
- }
- CHECK(StringToTrustRegionStrategyType(
- CERES_GET_FLAG(FLAGS_trust_region_strategy),
- &options->trust_region_strategy_type));
- CHECK(
- StringToDoglegType(CERES_GET_FLAG(FLAGS_dogleg), &options->dogleg_type));
- options->use_inner_iterations = CERES_GET_FLAG(FLAGS_inner_iterations);
- }
- void SetSolverOptionsFromFlags(BALProblem* bal_problem,
- Solver::Options* options) {
- SetMinimizerOptions(options);
- SetLinearSolver(options);
- SetOrdering(bal_problem, options);
- }
- void BuildProblem(BALProblem* bal_problem, Problem* problem) {
- const int point_block_size = bal_problem->point_block_size();
- const int camera_block_size = bal_problem->camera_block_size();
- double* points = bal_problem->mutable_points();
- double* cameras = bal_problem->mutable_cameras();
- // Observations is 2*num_observations long array observations =
- // [u_1, u_2, ... , u_n], where each u_i is two dimensional, the x
- // and y positions of the observation.
- const double* observations = bal_problem->observations();
- for (int i = 0; i < bal_problem->num_observations(); ++i) {
- CostFunction* cost_function;
- // Each Residual block takes a point and a camera as input and
- // outputs a 2 dimensional residual.
- cost_function = (CERES_GET_FLAG(FLAGS_use_quaternions))
- ? SnavelyReprojectionErrorWithQuaternions::Create(
- observations[2 * i + 0], observations[2 * i + 1])
- : SnavelyReprojectionError::Create(
- observations[2 * i + 0], observations[2 * i + 1]);
- // If enabled use Huber's loss function.
- LossFunction* loss_function =
- CERES_GET_FLAG(FLAGS_robustify) ? new HuberLoss(1.0) : nullptr;
- // Each observation corresponds to a pair of a camera and a point
- // which are identified by camera_index()[i] and point_index()[i]
- // respectively.
- double* camera =
- cameras + camera_block_size * bal_problem->camera_index()[i];
- double* point = points + point_block_size * bal_problem->point_index()[i];
- problem->AddResidualBlock(cost_function, loss_function, camera, point);
- }
- if (CERES_GET_FLAG(FLAGS_use_quaternions) &&
- CERES_GET_FLAG(FLAGS_use_manifolds)) {
- Manifold* camera_manifold =
- new ProductManifold<QuaternionManifold, EuclideanManifold<6>>{};
- for (int i = 0; i < bal_problem->num_cameras(); ++i) {
- problem->SetManifold(cameras + camera_block_size * i, camera_manifold);
- }
- }
- }
- void SolveProblem(const char* filename) {
- BALProblem bal_problem(filename, CERES_GET_FLAG(FLAGS_use_quaternions));
- if (!CERES_GET_FLAG(FLAGS_initial_ply).empty()) {
- bal_problem.WriteToPLYFile(CERES_GET_FLAG(FLAGS_initial_ply));
- }
- Problem problem;
- srand(CERES_GET_FLAG(FLAGS_random_seed));
- bal_problem.Normalize();
- bal_problem.Perturb(CERES_GET_FLAG(FLAGS_rotation_sigma),
- CERES_GET_FLAG(FLAGS_translation_sigma),
- CERES_GET_FLAG(FLAGS_point_sigma));
- BuildProblem(&bal_problem, &problem);
- Solver::Options options;
- SetSolverOptionsFromFlags(&bal_problem, &options);
- options.gradient_tolerance = 1e-16;
- options.function_tolerance = 1e-16;
- options.parameter_tolerance = 1e-16;
- Solver::Summary summary;
- Solve(options, &problem, &summary);
- std::cout << summary.FullReport() << "\n";
- if (!CERES_GET_FLAG(FLAGS_final_ply).empty()) {
- bal_problem.WriteToPLYFile(CERES_GET_FLAG(FLAGS_final_ply));
- }
- }
- } // namespace
- } // namespace ceres::examples
- int main(int argc, char** argv) {
- GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
- google::InitGoogleLogging(argv[0]);
- if (CERES_GET_FLAG(FLAGS_input).empty()) {
- LOG(ERROR) << "Usage: bundle_adjuster --input=bal_problem";
- return 1;
- }
- CHECK(CERES_GET_FLAG(FLAGS_use_quaternions) ||
- !CERES_GET_FLAG(FLAGS_use_manifolds))
- << "--use_manifolds can only be used with --use_quaternions.";
- ceres::examples::SolveProblem(CERES_GET_FLAG(FLAGS_input).c_str());
- return 0;
- }
|