123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 |
- .. default-domain:: cpp
- .. cpp:namespace:: ceres
- .. _chapter-interfacing_with_automatic_differentiation:
- Interfacing with Automatic Differentiation
- ==========================================
- Automatic differentiation is straightforward to use in cases where an
- explicit expression for the cost function is available. But this is
- not always possible. Often one has to interface with external routines
- or data. In this chapter we will consider a number of different ways
- of doing so.
- To do this, we will consider the problem of finding parameters
- :math:`\theta` and :math:`t` that solve an optimization problem of the
- form:
- .. math::
- \min & \quad \sum_i \left \|y_i - f\left (\|q_{i}\|^2\right) q_i
- \right \|^2\\
- \text{such that} & \quad q_i = R(\theta) x_i + t
- Here, :math:`R` is a two dimensional rotation matrix parameterized
- using the angle :math:`\theta` and :math:`t` is a two dimensional
- vector. :math:`f` is an external distortion function.
- We begin by considering the case, where we have a templated function
- :code:`TemplatedComputeDistortion` that can compute the function
- :math:`f`. Then the implementation of the corresponding residual
- functor is straightforward and will look as follows:
- .. code-block:: c++
- :emphasize-lines: 21
- template <typename T> T TemplatedComputeDistortion(const T r2) {
- const double k1 = 0.0082;
- const double k2 = 0.000023;
- return 1.0 + k1 * r2 + k2 * r2 * r2;
- }
- struct Affine2DWithDistortion {
- Affine2DWithDistortion(const double x_in[2], const double y_in[2]) {
- x[0] = x_in[0];
- x[1] = x_in[1];
- y[0] = y_in[0];
- y[1] = y_in[1];
- }
- template <typename T>
- bool operator()(const T* theta,
- const T* t,
- T* residuals) const {
- const T q_0 = cos(theta[0]) * x[0] - sin(theta[0]) * x[1] + t[0];
- const T q_1 = sin(theta[0]) * x[0] + cos(theta[0]) * x[1] + t[1];
- const T f = TemplatedComputeDistortion(q_0 * q_0 + q_1 * q_1);
- residuals[0] = y[0] - f * q_0;
- residuals[1] = y[1] - f * q_1;
- return true;
- }
- double x[2];
- double y[2];
- };
- So far so good, but let us now consider three ways of defining
- :math:`f` which are not directly amenable to being used with automatic
- differentiation:
- #. A non-templated function that evaluates its value.
- #. A function that evaluates its value and derivative.
- #. A function that is defined as a table of values to be interpolated.
- We will consider them in turn below.
- A function that returns its value
- ----------------------------------
- Suppose we were given a function :code:`ComputeDistortionValue` with
- the following signature
- .. code-block:: c++
- double ComputeDistortionValue(double r2);
- that computes the value of :math:`f`. The actual implementation of the
- function does not matter. Interfacing this function with
- :code:`Affine2DWithDistortion` is a three step process:
- 1. Wrap :code:`ComputeDistortionValue` into a functor
- :code:`ComputeDistortionValueFunctor`.
- 2. Numerically differentiate :code:`ComputeDistortionValueFunctor`
- using :class:`NumericDiffCostFunction` to create a
- :class:`CostFunction`.
- 3. Wrap the resulting :class:`CostFunction` object using
- :class:`CostFunctionToFunctor`. The resulting object is a functor
- with a templated :code:`operator()` method, which pipes the
- Jacobian computed by :class:`NumericDiffCostFunction` into the
- appropriate :code:`Jet` objects.
- An implementation of the above three steps looks as follows:
- .. code-block:: c++
- :emphasize-lines: 15,16,17,18,19,20, 29
- struct ComputeDistortionValueFunctor {
- bool operator()(const double* r2, double* value) const {
- *value = ComputeDistortionValue(r2[0]);
- return true;
- }
- };
- struct Affine2DWithDistortion {
- Affine2DWithDistortion(const double x_in[2], const double y_in[2]) {
- x[0] = x_in[0];
- x[1] = x_in[1];
- y[0] = y_in[0];
- y[1] = y_in[1];
- compute_distortion.reset(new ceres::CostFunctionToFunctor<1, 1>(
- new ceres::NumericDiffCostFunction<ComputeDistortionValueFunctor,
- ceres::CENTRAL,
- 1,
- 1>(
- new ComputeDistortionValueFunctor)));
- }
- template <typename T>
- bool operator()(const T* theta, const T* t, T* residuals) const {
- const T q_0 = cos(theta[0]) * x[0] - sin(theta[0]) * x[1] + t[0];
- const T q_1 = sin(theta[0]) * x[0] + cos(theta[0]) * x[1] + t[1];
- const T r2 = q_0 * q_0 + q_1 * q_1;
- T f;
- (*compute_distortion)(&r2, &f);
- residuals[0] = y[0] - f * q_0;
- residuals[1] = y[1] - f * q_1;
- return true;
- }
- double x[2];
- double y[2];
- std::unique_ptr<ceres::CostFunctionToFunctor<1, 1> > compute_distortion;
- };
- A function that returns its value and derivative
- ------------------------------------------------
- Now suppose we are given a function :code:`ComputeDistortionValue`
- that is able to compute its value and optionally its Jacobian on demand
- and has the following signature:
- .. code-block:: c++
- void ComputeDistortionValueAndJacobian(double r2,
- double* value,
- double* jacobian);
- Again, the actual implementation of the function does not
- matter. Interfacing this function with :code:`Affine2DWithDistortion`
- is a two step process:
- 1. Wrap :code:`ComputeDistortionValueAndJacobian` into a
- :class:`CostFunction` object which we call
- :code:`ComputeDistortionFunction`.
- 2. Wrap the resulting :class:`ComputeDistortionFunction` object using
- :class:`CostFunctionToFunctor`. The resulting object is a functor
- with a templated :code:`operator()` method, which pipes the
- Jacobian computed by :class:`NumericDiffCostFunction` into the
- appropriate :code:`Jet` objects.
- The resulting code will look as follows:
- .. code-block:: c++
- :emphasize-lines: 21,22, 33
- class ComputeDistortionFunction : public ceres::SizedCostFunction<1, 1> {
- public:
- virtual bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const {
- if (!jacobians) {
- ComputeDistortionValueAndJacobian(parameters[0][0], residuals, nullptr);
- } else {
- ComputeDistortionValueAndJacobian(parameters[0][0], residuals, jacobians[0]);
- }
- return true;
- }
- };
- struct Affine2DWithDistortion {
- Affine2DWithDistortion(const double x_in[2], const double y_in[2]) {
- x[0] = x_in[0];
- x[1] = x_in[1];
- y[0] = y_in[0];
- y[1] = y_in[1];
- compute_distortion.reset(
- new ceres::CostFunctionToFunctor<1, 1>(new ComputeDistortionFunction));
- }
- template <typename T>
- bool operator()(const T* theta,
- const T* t,
- T* residuals) const {
- const T q_0 = cos(theta[0]) * x[0] - sin(theta[0]) * x[1] + t[0];
- const T q_1 = sin(theta[0]) * x[0] + cos(theta[0]) * x[1] + t[1];
- const T r2 = q_0 * q_0 + q_1 * q_1;
- T f;
- (*compute_distortion)(&r2, &f);
- residuals[0] = y[0] - f * q_0;
- residuals[1] = y[1] - f * q_1;
- return true;
- }
- double x[2];
- double y[2];
- std::unique_ptr<ceres::CostFunctionToFunctor<1, 1> > compute_distortion;
- };
- A function that is defined as a table of values
- -----------------------------------------------
- The third and final case we will consider is where the function
- :math:`f` is defined as a table of values on the interval :math:`[0,
- 100)`, with a value for each integer.
- .. code-block:: c++
- vector<double> distortion_values;
- There are many ways of interpolating a table of values. Perhaps the
- simplest and most common method is linear interpolation. But it is not
- a great idea to use linear interpolation because the interpolating
- function is not differentiable at the sample points.
- A simple (well behaved) differentiable interpolation is the `Cubic
- Hermite Spline
- <http://en.wikipedia.org/wiki/Cubic_Hermite_spline>`_. Ceres Solver
- ships with routines to perform Cubic & Bi-Cubic interpolation that is
- automatic differentiation friendly.
- Using Cubic interpolation requires first constructing a
- :class:`Grid1D` object to wrap the table of values and then
- constructing a :class:`CubicInterpolator` object using it.
- The resulting code will look as follows:
- .. code-block:: c++
- :emphasize-lines: 10,11,12,13, 24, 32,33
- struct Affine2DWithDistortion {
- Affine2DWithDistortion(const double x_in[2],
- const double y_in[2],
- const std::vector<double>& distortion_values) {
- x[0] = x_in[0];
- x[1] = x_in[1];
- y[0] = y_in[0];
- y[1] = y_in[1];
- grid.reset(new ceres::Grid1D<double, 1>(
- &distortion_values[0], 0, distortion_values.size()));
- compute_distortion.reset(
- new ceres::CubicInterpolator<ceres::Grid1D<double, 1> >(*grid));
- }
- template <typename T>
- bool operator()(const T* theta,
- const T* t,
- T* residuals) const {
- const T q_0 = cos(theta[0]) * x[0] - sin(theta[0]) * x[1] + t[0];
- const T q_1 = sin(theta[0]) * x[0] + cos(theta[0]) * x[1] + t[1];
- const T r2 = q_0 * q_0 + q_1 * q_1;
- T f;
- compute_distortion->Evaluate(r2, &f);
- residuals[0] = y[0] - f * q_0;
- residuals[1] = y[1] - f * q_1;
- return true;
- }
- double x[2];
- double y[2];
- std::unique_ptr<ceres::Grid1D<double, 1> > grid;
- std::unique_ptr<ceres::CubicInterpolator<ceres::Grid1D<double, 1> > > compute_distortion;
- };
- In the above example we used :class:`Grid1D` and
- :class:`CubicInterpolator` to interpolate a one dimensional table of
- values. :class:`Grid2D` combined with :class:`CubicInterpolator` lets
- the user to interpolate two dimensional tables of values. Note that
- neither :class:`Grid1D` or :class:`Grid2D` are limited to scalar
- valued functions, they also work with vector valued functions.
|