123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- .. default-domain:: cpp
- .. cpp:namespace:: ceres
- .. _chapter-analytical_derivatives:
- ====================
- Analytic Derivatives
- ====================
- Consider the problem of fitting the following curve (`Rat43
- <http://www.itl.nist.gov/div898/strd/nls/data/ratkowsky3.shtml>`_) to
- data:
- .. math::
- y = \frac{b_1}{(1+e^{b_2-b_3x})^{1/b_4}}
- That is, given some data :math:`\{x_i, y_i\},\ \forall i=1,... ,n`,
- determine parameters :math:`b_1, b_2, b_3` and :math:`b_4` that best
- fit this data.
- Which can be stated as the problem of finding the
- values of :math:`b_1, b_2, b_3` and :math:`b_4` are the ones that
- minimize the following objective function [#f1]_:
- .. math::
- \begin{align}
- E(b_1, b_2, b_3, b_4)
- &= \sum_i f^2(b_1, b_2, b_3, b_4 ; x_i, y_i)\\
- &= \sum_i \left(\frac{b_1}{(1+e^{b_2-b_3x_i})^{1/b_4}} - y_i\right)^2\\
- \end{align}
- To solve this problem using Ceres Solver, we need to define a
- :class:`CostFunction` that computes the residual :math:`f` for a given
- :math:`x` and :math:`y` and its derivatives with respect to
- :math:`b_1, b_2, b_3` and :math:`b_4`.
- Using elementary differential calculus, we can see that:
- .. math::
- \begin{align}
- D_1 f(b_1, b_2, b_3, b_4; x,y) &= \frac{1}{(1+e^{b_2-b_3x})^{1/b_4}}\\
- D_2 f(b_1, b_2, b_3, b_4; x,y) &=
- \frac{-b_1e^{b_2-b_3x}}{b_4(1+e^{b_2-b_3x})^{1/b_4 + 1}} \\
- D_3 f(b_1, b_2, b_3, b_4; x,y) &=
- \frac{b_1xe^{b_2-b_3x}}{b_4(1+e^{b_2-b_3x})^{1/b_4 + 1}} \\
- D_4 f(b_1, b_2, b_3, b_4; x,y) & = \frac{b_1 \log\left(1+e^{b_2-b_3x}\right) }{b_4^2(1+e^{b_2-b_3x})^{1/b_4}}
- \end{align}
- With these derivatives in hand, we can now implement the
- :class:`CostFunction` as:
- .. code-block:: c++
- class Rat43Analytic : public SizedCostFunction<1,4> {
- public:
- Rat43Analytic(const double x, const double y) : x_(x), y_(y) {}
- virtual ~Rat43Analytic() {}
- virtual bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const {
- const double b1 = parameters[0][0];
- const double b2 = parameters[0][1];
- const double b3 = parameters[0][2];
- const double b4 = parameters[0][3];
- residuals[0] = b1 * pow(1 + exp(b2 - b3 * x_), -1.0 / b4) - y_;
- if (!jacobians) return true;
- double* jacobian = jacobians[0];
- if (!jacobian) return true;
- jacobian[0] = pow(1 + exp(b2 - b3 * x_), -1.0 / b4);
- jacobian[1] = -b1 * exp(b2 - b3 * x_) *
- pow(1 + exp(b2 - b3 * x_), -1.0 / b4 - 1) / b4;
- jacobian[2] = x_ * b1 * exp(b2 - b3 * x_) *
- pow(1 + exp(b2 - b3 * x_), -1.0 / b4 - 1) / b4;
- jacobian[3] = b1 * log(1 + exp(b2 - b3 * x_)) *
- pow(1 + exp(b2 - b3 * x_), -1.0 / b4) / (b4 * b4);
- return true;
- }
- private:
- const double x_;
- const double y_;
- };
- This is tedious code, hard to read and with a lot of
- redundancy. So in practice we will cache some sub-expressions to
- improve its efficiency, which would give us something like:
- .. code-block:: c++
- class Rat43AnalyticOptimized : public SizedCostFunction<1,4> {
- public:
- Rat43AnalyticOptimized(const double x, const double y) : x_(x), y_(y) {}
- virtual ~Rat43AnalyticOptimized() {}
- virtual bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const {
- const double b1 = parameters[0][0];
- const double b2 = parameters[0][1];
- const double b3 = parameters[0][2];
- const double b4 = parameters[0][3];
- const double t1 = exp(b2 - b3 * x_);
- const double t2 = 1 + t1;
- const double t3 = pow(t2, -1.0 / b4);
- residuals[0] = b1 * t3 - y_;
- if (!jacobians) return true;
- double* jacobian = jacobians[0];
- if (!jacobian) return true;
- const double t4 = pow(t2, -1.0 / b4 - 1);
- jacobian[0] = t3;
- jacobian[1] = -b1 * t1 * t4 / b4;
- jacobian[2] = -x_ * jacobian[1];
- jacobian[3] = b1 * log(t2) * t3 / (b4 * b4);
- return true;
- }
- private:
- const double x_;
- const double y_;
- };
- What is the difference in performance of these two implementations?
- ========================== =========
- CostFunction Time (ns)
- ========================== =========
- Rat43Analytic 255
- Rat43AnalyticOptimized 92
- ========================== =========
- ``Rat43AnalyticOptimized`` is :math:`2.8` times faster than
- ``Rat43Analytic``. This difference in run-time is not uncommon. To
- get the best performance out of analytically computed derivatives, one
- usually needs to optimize the code to account for common
- sub-expressions.
- When should you use analytical derivatives?
- ===========================================
- #. The expressions are simple, e.g. mostly linear.
- #. A computer algebra system like `Maple
- <https://www.maplesoft.com/products/maple/>`_ , `Mathematica
- <https://www.wolfram.com/mathematica/>`_, or `SymPy
- <http://www.sympy.org/en/index.html>`_ can be used to symbolically
- differentiate the objective function and generate the C++ to
- evaluate them.
- #. Performance is of utmost concern and there is algebraic structure
- in the terms that you can exploit to get better performance than
- automatic differentiation.
- That said, getting the best performance out of analytical
- derivatives requires a non-trivial amount of work. Before going
- down this path, it is useful to measure the amount of time being
- spent evaluating the Jacobian as a fraction of the total solve time
- and remember `Amdahl's Law
- <https://en.wikipedia.org/wiki/Amdahl's_law>`_ is your friend.
- #. There is no other way to compute the derivatives, e.g. you
- wish to compute the derivative of the root of a polynomial:
- .. math::
- a_3(x,y)z^3 + a_2(x,y)z^2 + a_1(x,y)z + a_0(x,y) = 0
- with respect to :math:`x` and :math:`y`. This requires the use of
- the `Inverse Function Theorem
- <https://en.wikipedia.org/wiki/Inverse_function_theorem>`_
- #. You love the chain rule and actually enjoy doing all the algebra by
- hand.
- .. rubric:: Footnotes
- .. [#f1] The notion of best fit depends on the choice of the objective
- function used to measure the quality of fit, which in turn
- depends on the underlying noise process which generated the
- observations. Minimizing the sum of squared differences is
- the right thing to do when the noise is `Gaussian
- <https://en.wikipedia.org/wiki/Normal_distribution>`_. In
- that case the optimal value of the parameters is the `Maximum
- Likelihood Estimate
- <https://en.wikipedia.org/wiki/Maximum_likelihood_estimation>`_.
|