123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475 |
- NIST/ITL StRD
- Dataset Name: Rat43 (Rat43.dat)
- File Format: ASCII
- Starting Values (lines 41 to 44)
- Certified Values (lines 41 to 49)
- Data (lines 61 to 75)
- Procedure: Nonlinear Least Squares Regression
- Description: This model and data are an example of fitting
- sigmoidal growth curves taken from Ratkowsky (1983).
- The response variable is the dry weight of onion bulbs
- and tops, and the predictor variable is growing time.
- Reference: Ratkowsky, D.A. (1983).
- Nonlinear Regression Modeling.
- New York, NY: Marcel Dekker, pp. 62 and 88.
- Data: 1 Response (y = onion bulb dry weight)
- 1 Predictor (x = growing time)
- 15 Observations
- Higher Level of Difficulty
- Observed Data
- Model: Exponential Class
- 4 Parameters (b1 to b4)
- y = b1 / ((1+exp[b2-b3*x])**(1/b4)) + e
- Starting Values Certified Values
-
- Start 1 Start 2 Parameter Standard Deviation
- b1 = 100 700 6.9964151270E+02 1.6302297817E+01
- b2 = 10 5 5.2771253025E+00 2.0828735829E+00
- b3 = 1 0.75 7.5962938329E-01 1.9566123451E-01
- b4 = 1 1.3 1.2792483859E+00 6.8761936385E-01
-
- Residual Sum of Squares: 8.7864049080E+03
- Residual Standard Deviation: 2.8262414662E+01
- Degrees of Freedom: 9
- Number of Observations: 15
-
-
-
-
-
-
-
-
-
-
- Data: y x
- 16.08E0 1.0E0
- 33.83E0 2.0E0
- 65.80E0 3.0E0
- 97.20E0 4.0E0
- 191.55E0 5.0E0
- 326.20E0 6.0E0
- 386.87E0 7.0E0
- 520.53E0 8.0E0
- 590.03E0 9.0E0
- 651.92E0 10.0E0
- 724.93E0 11.0E0
- 699.56E0 12.0E0
- 689.96E0 13.0E0
- 637.56E0 14.0E0
- 717.41E0 15.0E0
|