123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- NIST/ITL StRD
- Dataset Name: Rat42 (Rat42.dat)
- File Format: ASCII
- Starting Values (lines 41 to 43)
- Certified Values (lines 41 to 48)
- Data (lines 61 to 69)
- Procedure: Nonlinear Least Squares Regression
- Description: This model and data are an example of fitting
- sigmoidal growth curves taken from Ratkowsky (1983).
- The response variable is pasture yield, and the
- predictor variable is growing time.
- Reference: Ratkowsky, D.A. (1983).
- Nonlinear Regression Modeling.
- New York, NY: Marcel Dekker, pp. 61 and 88.
- Data: 1 Response (y = pasture yield)
- 1 Predictor (x = growing time)
- 9 Observations
- Higher Level of Difficulty
- Observed Data
- Model: Exponential Class
- 3 Parameters (b1 to b3)
- y = b1 / (1+exp[b2-b3*x]) + e
- Starting Values Certified Values
- Start 1 Start 2 Parameter Standard Deviation
- b1 = 100 75 7.2462237576E+01 1.7340283401E+00
- b2 = 1 2.5 2.6180768402E+00 8.8295217536E-02
- b3 = 0.1 0.07 6.7359200066E-02 3.4465663377E-03
- Residual Sum of Squares: 8.0565229338E+00
- Residual Standard Deviation: 1.1587725499E+00
- Degrees of Freedom: 6
- Number of Observations: 9
- Data: y x
- 8.930E0 9.000E0
- 10.800E0 14.000E0
- 18.590E0 21.000E0
- 22.330E0 28.000E0
- 39.350E0 42.000E0
- 56.110E0 57.000E0
- 61.730E0 63.000E0
- 64.620E0 70.000E0
- 67.080E0 79.000E0
|