123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- NIST/ITL StRD
- Dataset Name: MGH17 (MGH17.dat)
- File Format: ASCII
- Starting Values (lines 41 to 45)
- Certified Values (lines 41 to 50)
- Data (lines 61 to 93)
- Procedure: Nonlinear Least Squares Regression
- Description: This problem was found to be difficult for some very
- good algorithms.
- See More, J. J., Garbow, B. S., and Hillstrom, K. E.
- (1981). Testing unconstrained optimization software.
- ACM Transactions on Mathematical Software. 7(1):
- pp. 17-41.
- Reference: Osborne, M. R. (1972).
- Some aspects of nonlinear least squares
- calculations. In Numerical Methods for Nonlinear
- Optimization, Lootsma (Ed).
- New York, NY: Academic Press, pp. 171-189.
-
- Data: 1 Response (y)
- 1 Predictor (x)
- 33 Observations
- Average Level of Difficulty
- Generated Data
- Model: Exponential Class
- 5 Parameters (b1 to b5)
- y = b1 + b2*exp[-x*b4] + b3*exp[-x*b5] + e
- Starting values Certified Values
- Start 1 Start 2 Parameter Standard Deviation
- b1 = 50 0.5 3.7541005211E-01 2.0723153551E-03
- b2 = 150 1.5 1.9358469127E+00 2.2031669222E-01
- b3 = -100 -1 -1.4646871366E+00 2.2175707739E-01
- b4 = 1 0.01 1.2867534640E-02 4.4861358114E-04
- b5 = 2 0.02 2.2122699662E-02 8.9471996575E-04
- Residual Sum of Squares: 5.4648946975E-05
- Residual Standard Deviation: 1.3970497866E-03
- Degrees of Freedom: 28
- Number of Observations: 33
- Data: y x
- 8.440000E-01 0.000000E+00
- 9.080000E-01 1.000000E+01
- 9.320000E-01 2.000000E+01
- 9.360000E-01 3.000000E+01
- 9.250000E-01 4.000000E+01
- 9.080000E-01 5.000000E+01
- 8.810000E-01 6.000000E+01
- 8.500000E-01 7.000000E+01
- 8.180000E-01 8.000000E+01
- 7.840000E-01 9.000000E+01
- 7.510000E-01 1.000000E+02
- 7.180000E-01 1.100000E+02
- 6.850000E-01 1.200000E+02
- 6.580000E-01 1.300000E+02
- 6.280000E-01 1.400000E+02
- 6.030000E-01 1.500000E+02
- 5.800000E-01 1.600000E+02
- 5.580000E-01 1.700000E+02
- 5.380000E-01 1.800000E+02
- 5.220000E-01 1.900000E+02
- 5.060000E-01 2.000000E+02
- 4.900000E-01 2.100000E+02
- 4.780000E-01 2.200000E+02
- 4.670000E-01 2.300000E+02
- 4.570000E-01 2.400000E+02
- 4.480000E-01 2.500000E+02
- 4.380000E-01 2.600000E+02
- 4.310000E-01 2.700000E+02
- 4.240000E-01 2.800000E+02
- 4.200000E-01 2.900000E+02
- 4.140000E-01 3.000000E+02
- 4.110000E-01 3.100000E+02
- 4.060000E-01 3.200000E+02
|