1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- NIST/ITL StRD
- Dataset Name: MGH09 (MGH09.dat)
- File Format: ASCII
- Starting Values (lines 41 to 44)
- Certified Values (lines 41 to 49)
- Data (lines 61 to 71)
- Procedure: Nonlinear Least Squares Regression
- Description: This problem was found to be difficult for some very
- good algorithms. There is a local minimum at (+inf,
- -14.07..., -inf, -inf) with final sum of squares
- 0.00102734....
- See More, J. J., Garbow, B. S., and Hillstrom, K. E.
- (1981). Testing unconstrained optimization software.
- ACM Transactions on Mathematical Software. 7(1):
- pp. 17-41.
- Reference: Kowalik, J.S., and M. R. Osborne, (1978).
- Methods for Unconstrained Optimization Problems.
- New York, NY: Elsevier North-Holland.
- Data: 1 Response (y)
- 1 Predictor (x)
- 11 Observations
- Higher Level of Difficulty
- Generated Data
-
- Model: Rational Class (linear/quadratic)
- 4 Parameters (b1 to b4)
-
- y = b1*(x**2+x*b2) / (x**2+x*b3+b4) + e
-
-
- Starting values Certified Values
- Start 1 Start 2 Parameter Standard Deviation
- b1 = 25 0.25 1.9280693458E-01 1.1435312227E-02
- b2 = 39 0.39 1.9128232873E-01 1.9633220911E-01
- b3 = 41.5 0.415 1.2305650693E-01 8.0842031232E-02
- b4 = 39 0.39 1.3606233068E-01 9.0025542308E-02
- Residual Sum of Squares: 3.0750560385E-04
- Residual Standard Deviation: 6.6279236551E-03
- Degrees of Freedom: 7
- Number of Observations: 11
-
-
-
-
-
- Data: y x
- 1.957000E-01 4.000000E+00
- 1.947000E-01 2.000000E+00
- 1.735000E-01 1.000000E+00
- 1.600000E-01 5.000000E-01
- 8.440000E-02 2.500000E-01
- 6.270000E-02 1.670000E-01
- 4.560000E-02 1.250000E-01
- 3.420000E-02 1.000000E-01
- 3.230000E-02 8.330000E-02
- 2.350000E-02 7.140000E-02
- 2.460000E-02 6.250000E-02
|