MGH09.dat 2.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
  1. NIST/ITL StRD
  2. Dataset Name: MGH09 (MGH09.dat)
  3. File Format: ASCII
  4. Starting Values (lines 41 to 44)
  5. Certified Values (lines 41 to 49)
  6. Data (lines 61 to 71)
  7. Procedure: Nonlinear Least Squares Regression
  8. Description: This problem was found to be difficult for some very
  9. good algorithms. There is a local minimum at (+inf,
  10. -14.07..., -inf, -inf) with final sum of squares
  11. 0.00102734....
  12. See More, J. J., Garbow, B. S., and Hillstrom, K. E.
  13. (1981). Testing unconstrained optimization software.
  14. ACM Transactions on Mathematical Software. 7(1):
  15. pp. 17-41.
  16. Reference: Kowalik, J.S., and M. R. Osborne, (1978).
  17. Methods for Unconstrained Optimization Problems.
  18. New York, NY: Elsevier North-Holland.
  19. Data: 1 Response (y)
  20. 1 Predictor (x)
  21. 11 Observations
  22. Higher Level of Difficulty
  23. Generated Data
  24. Model: Rational Class (linear/quadratic)
  25. 4 Parameters (b1 to b4)
  26. y = b1*(x**2+x*b2) / (x**2+x*b3+b4) + e
  27. Starting values Certified Values
  28. Start 1 Start 2 Parameter Standard Deviation
  29. b1 = 25 0.25 1.9280693458E-01 1.1435312227E-02
  30. b2 = 39 0.39 1.9128232873E-01 1.9633220911E-01
  31. b3 = 41.5 0.415 1.2305650693E-01 8.0842031232E-02
  32. b4 = 39 0.39 1.3606233068E-01 9.0025542308E-02
  33. Residual Sum of Squares: 3.0750560385E-04
  34. Residual Standard Deviation: 6.6279236551E-03
  35. Degrees of Freedom: 7
  36. Number of Observations: 11
  37. Data: y x
  38. 1.957000E-01 4.000000E+00
  39. 1.947000E-01 2.000000E+00
  40. 1.735000E-01 1.000000E+00
  41. 1.600000E-01 5.000000E-01
  42. 8.440000E-02 2.500000E-01
  43. 6.270000E-02 1.670000E-01
  44. 4.560000E-02 1.250000E-01
  45. 3.420000E-02 1.000000E-01
  46. 3.230000E-02 8.330000E-02
  47. 2.350000E-02 7.140000E-02
  48. 2.460000E-02 6.250000E-02