123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2017 Gagan Goel <gagan.nith@gmail.com>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "main.h"
- #include <Eigen/CXX11/Tensor>
- using Eigen::Tensor;
- using Eigen::array;
- template <int DataLayout>
- static void test_0D_trace() {
- Tensor<float, 0, DataLayout> tensor;
- tensor.setRandom();
- array<ptrdiff_t, 0> dims;
- Tensor<float, 0, DataLayout> result = tensor.trace(dims);
- VERIFY_IS_EQUAL(result(), tensor());
- }
- template <int DataLayout>
- static void test_all_dimensions_trace() {
- Tensor<float, 3, DataLayout> tensor1(5, 5, 5);
- tensor1.setRandom();
- Tensor<float, 0, DataLayout> result1 = tensor1.trace();
- VERIFY_IS_EQUAL(result1.rank(), 0);
- float sum = 0.0f;
- for (int i = 0; i < 5; ++i) {
- sum += tensor1(i, i, i);
- }
- VERIFY_IS_EQUAL(result1(), sum);
- Tensor<float, 5, DataLayout> tensor2(7, 7, 7, 7, 7);
- tensor2.setRandom();
- array<ptrdiff_t, 5> dims = { { 2, 1, 0, 3, 4 } };
- Tensor<float, 0, DataLayout> result2 = tensor2.trace(dims);
- VERIFY_IS_EQUAL(result2.rank(), 0);
- sum = 0.0f;
- for (int i = 0; i < 7; ++i) {
- sum += tensor2(i, i, i, i, i);
- }
- VERIFY_IS_EQUAL(result2(), sum);
- }
- template <int DataLayout>
- static void test_simple_trace() {
- Tensor<float, 3, DataLayout> tensor1(3, 5, 3);
- tensor1.setRandom();
- array<ptrdiff_t, 2> dims1 = { { 0, 2 } };
- Tensor<float, 1, DataLayout> result1 = tensor1.trace(dims1);
- VERIFY_IS_EQUAL(result1.rank(), 1);
- VERIFY_IS_EQUAL(result1.dimension(0), 5);
- float sum = 0.0f;
- for (int i = 0; i < 5; ++i) {
- sum = 0.0f;
- for (int j = 0; j < 3; ++j) {
- sum += tensor1(j, i, j);
- }
- VERIFY_IS_EQUAL(result1(i), sum);
- }
- Tensor<float, 4, DataLayout> tensor2(5, 5, 7, 7);
- tensor2.setRandom();
- array<ptrdiff_t, 2> dims2 = { { 2, 3 } };
- Tensor<float, 2, DataLayout> result2 = tensor2.trace(dims2);
- VERIFY_IS_EQUAL(result2.rank(), 2);
- VERIFY_IS_EQUAL(result2.dimension(0), 5);
- VERIFY_IS_EQUAL(result2.dimension(1), 5);
- for (int i = 0; i < 5; ++i) {
- for (int j = 0; j < 5; ++j) {
- sum = 0.0f;
- for (int k = 0; k < 7; ++k) {
- sum += tensor2(i, j, k, k);
- }
- VERIFY_IS_EQUAL(result2(i, j), sum);
- }
- }
- array<ptrdiff_t, 2> dims3 = { { 1, 0 } };
- Tensor<float, 2, DataLayout> result3 = tensor2.trace(dims3);
- VERIFY_IS_EQUAL(result3.rank(), 2);
- VERIFY_IS_EQUAL(result3.dimension(0), 7);
- VERIFY_IS_EQUAL(result3.dimension(1), 7);
- for (int i = 0; i < 7; ++i) {
- for (int j = 0; j < 7; ++j) {
- sum = 0.0f;
- for (int k = 0; k < 5; ++k) {
- sum += tensor2(k, k, i, j);
- }
- VERIFY_IS_EQUAL(result3(i, j), sum);
- }
- }
- Tensor<float, 5, DataLayout> tensor3(3, 7, 3, 7, 3);
- tensor3.setRandom();
- array<ptrdiff_t, 3> dims4 = { { 0, 2, 4 } };
- Tensor<float, 2, DataLayout> result4 = tensor3.trace(dims4);
- VERIFY_IS_EQUAL(result4.rank(), 2);
- VERIFY_IS_EQUAL(result4.dimension(0), 7);
- VERIFY_IS_EQUAL(result4.dimension(1), 7);
- for (int i = 0; i < 7; ++i) {
- for (int j = 0; j < 7; ++j) {
- sum = 0.0f;
- for (int k = 0; k < 3; ++k) {
- sum += tensor3(k, i, k, j, k);
- }
- VERIFY_IS_EQUAL(result4(i, j), sum);
- }
- }
- Tensor<float, 5, DataLayout> tensor4(3, 7, 4, 7, 5);
- tensor4.setRandom();
- array<ptrdiff_t, 2> dims5 = { { 1, 3 } };
- Tensor<float, 3, DataLayout> result5 = tensor4.trace(dims5);
- VERIFY_IS_EQUAL(result5.rank(), 3);
- VERIFY_IS_EQUAL(result5.dimension(0), 3);
- VERIFY_IS_EQUAL(result5.dimension(1), 4);
- VERIFY_IS_EQUAL(result5.dimension(2), 5);
- for (int i = 0; i < 3; ++i) {
- for (int j = 0; j < 4; ++j) {
- for (int k = 0; k < 5; ++k) {
- sum = 0.0f;
- for (int l = 0; l < 7; ++l) {
- sum += tensor4(i, l, j, l, k);
- }
- VERIFY_IS_EQUAL(result5(i, j, k), sum);
- }
- }
- }
- }
- template<int DataLayout>
- static void test_trace_in_expr() {
- Tensor<float, 4, DataLayout> tensor(2, 3, 5, 3);
- tensor.setRandom();
- array<ptrdiff_t, 2> dims = { { 1, 3 } };
- Tensor<float, 2, DataLayout> result(2, 5);
- result = result.constant(1.0f) - tensor.trace(dims);
- VERIFY_IS_EQUAL(result.rank(), 2);
- VERIFY_IS_EQUAL(result.dimension(0), 2);
- VERIFY_IS_EQUAL(result.dimension(1), 5);
- float sum = 0.0f;
- for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 5; ++j) {
- sum = 0.0f;
- for (int k = 0; k < 3; ++k) {
- sum += tensor(i, k, j, k);
- }
- VERIFY_IS_EQUAL(result(i, j), 1.0f - sum);
- }
- }
- }
- EIGEN_DECLARE_TEST(cxx11_tensor_trace) {
- CALL_SUBTEST(test_0D_trace<ColMajor>());
- CALL_SUBTEST(test_0D_trace<RowMajor>());
- CALL_SUBTEST(test_all_dimensions_trace<ColMajor>());
- CALL_SUBTEST(test_all_dimensions_trace<RowMajor>());
- CALL_SUBTEST(test_simple_trace<ColMajor>());
- CALL_SUBTEST(test_simple_trace<RowMajor>());
- CALL_SUBTEST(test_trace_in_expr<ColMajor>());
- CALL_SUBTEST(test_trace_in_expr<RowMajor>());
- }
|